首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   718篇
  免费   302篇
  国内免费   52篇
测绘学   108篇
大气科学   52篇
地球物理   574篇
地质学   221篇
海洋学   59篇
天文学   12篇
综合类   18篇
自然地理   28篇
  2024年   1篇
  2023年   4篇
  2022年   10篇
  2021年   18篇
  2020年   30篇
  2019年   40篇
  2018年   24篇
  2017年   35篇
  2016年   32篇
  2015年   47篇
  2014年   48篇
  2013年   52篇
  2012年   40篇
  2011年   43篇
  2010年   32篇
  2009年   43篇
  2008年   60篇
  2007年   39篇
  2006年   50篇
  2005年   54篇
  2004年   33篇
  2003年   28篇
  2002年   36篇
  2001年   36篇
  2000年   23篇
  1999年   36篇
  1998年   26篇
  1997年   18篇
  1996年   23篇
  1995年   16篇
  1994年   18篇
  1993年   14篇
  1992年   12篇
  1991年   8篇
  1990年   3篇
  1989年   13篇
  1988年   10篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1980年   3篇
  1978年   3篇
  1977年   2篇
  1954年   3篇
排序方式: 共有1072条查询结果,搜索用时 31 毫秒
11.
A large number of mineral processing equipment employs the basic principles of gravity concentration in a flowing fluid of a few millimetres thick in small open channels where the particles are distributed along the flow height based on their physical properties and the fluid flow characteristics. Fluid flow behaviour and slurry transportation characteristics in open channels have been the research topic for many years in many engineering disciplines. However, the open channels used in the mineral processing industries are different in terms of the size of the channel and the flow velocity used. Understanding of water split behaviour is, therefore, essential in modeling flowing film concentrators. In this paper, an attempt has been made to model the water split behaviour in an inclined open rectangular channel, resembling the actual size and the flow velocity used by the mineral processing industries, based on the Prandtl's mixing length approach.  相似文献   
12.
The satellite missions CHAMP, GRACE, and GOCE mark the beginning of a new era in gravity field determination and modeling. They provide unique models of the global stationary gravity field and its variation in time. Due to inevitable measurement errors, sophisticated pre-processing steps have to be applied before further use of the satellite measurements. In the framework of the GOCE mission, this includes outlier detection, absolute calibration and validation of the SGG (satellite gravity gradiometry) measurements, and removal of temporal effects. In general, outliers are defined as observations that appear to be inconsistent with the remainder of the data set. One goal is to evaluate the effect of additive, innovative and bulk outliers on the estimates of the spherical harmonic coefficients. It can be shown that even a small number of undetected outliers (<0.2 of all data points) can have an adverse effect on the coefficient estimates. Consequently, concepts for the identification and removal of outliers have to be developed. Novel outlier detection algorithms are derived and statistical methods are presented that may be used for this purpose. The methods aim at high outlier identification rates as well as small failure rates. A combined algorithm, based on wavelets and a statistical method, shows best performance with an identification rate of about 99%. To further reduce the influence of undetected outliers, an outlier detection algorithm is implemented inside the gravity field solver (the Quick-Look Gravity Field Analysis tool was used). This results in spherical harmonic coefficient estimates that are of similar quality to those obtained without outliers in the input data.  相似文献   
13.
The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.  相似文献   
14.
Thermal and rheological structures of the Xisha Trough, South China Sea   总被引:8,自引:0,他引:8  
The Xisha Trough, located in the northwest of the South China Sea (SCS) mainly rifted 30 Ma ago, has been a failed rift since the cessation of the seafloor spreading of the NW subbasin. Based on the velocity–depth model along Profile OBH-4 across the Xisha Trough, a seven-layer density–depth model is used to estimate density structure for the profile. The relationship between seismic velocity and radiogenic heat production is used to estimate the vertical distribution of heat sources in the lower crust. The 2-D temperature field is calculated by applying a 2-D numerical solution of the heat conduction equation and the thermal lithosphere thickness is obtained from the basalt dry solidus (BDS). The rheology of the profile is estimated on the basis of frictional failure in the brittle regime and power-law steady-state creep in the ductile regime. Rheological model is constructed for a three-layer model involving a granitic upper crust, a quartz diorite lower crust and an olivine upper mantle. Gravity modeling supports basically the velocity–depth model. The Moho along Profile OBH-4 is of relatively high heat flow ranging from 46 to 60 mW/m2 and the Moho heat flow is higher in the trough than on the flanks. The depth of the “thermal” lithospheric lower boundary is about 54 km in the center, deepens toward two sides, and is about 75 km at the northern slope area and about 70 km at the southern Xisha–Zhongsha Block. Rheological calculation indicates that the two thinnest ductile layers in the crust and the thickest brittle layer in the uppermost mantle lie in the central region, showing that the Xisha Trough has been rheologically strengthened, which are mainly due to later thermal relaxation. In addition, the strengthening in rheology during rifting was not the main factor in hampering the breakup of the Xisha Trough.  相似文献   
15.
Basement fault reactivation is now recognized as an important control on sedimentation and fault propagation in intracratonic basins. In southern Ontario, the basement consists of complexly structured mid-Proterozoic (ca. 1.2 Ga) crystalline rocks and metasedimentary rocks that are overlain by up to 1500 m of Paleozoic sedimentary strata. Reactivation of basement structures is suspected to control the location of Paleozoic fault and fracture systems, but evaluation has been hindered by a limited understanding of the regional structural characteristics of the buried basement. New aeromagnetic- and gravimetric-lineament mapping presented in this paper better resolves the location of basement discontinuities and provides further evidence for basement controls on the distribution of Paleozoic fault and fracture systems. Lineament mapping was facilitated by reprocessing and digital image enhancement (micro-levelling, regional residual separation, derivative filtering) of existing regional gravity and aeromagnetic datasets. Reprocessed images identify new details of the structural fabric of the basement below southern Ontario and delineate several previously unrecognized aeromagnetic and gravity lineaments and linear zones. Linear zones parallel the projected trends of mid-Proterozoic terrane boundaries identified by field mapping on the exposed shield to the north of the study area, and are interpreted as zones of shearing and basement faulting. Mapped aeromagnetic and gravity lineaments show similar trends to Paleozoic faults and fracture networks and broad zones of seismicity in southern Ontario. These new data support an ‘inheritance model’ for Paleozoic faulting, involving repeated reactivation and upward propagation of basement faults and fractures into overlying cover strata.  相似文献   
16.
Lithoprobe and industry seismic profiles have furnished evidence of major zones of easterly dipping Grenville deformed crust extending southwest from exposed Grenville rocks north of Lake Ontario. Additional constraints on subsurface structure limited to the postulated Clarendon–Linden fault system south of Lake Ontario are provided by five east–west reflection lines recorded in 1976. Spatial correlations between seismic structure and magnetic anomalies are described from both Lake Ontario and the newly reprocessed New York lines.In the Paleozoic to Precambrian upper crust, the New York seismic sections show: (1) An easterly thickening wedge of subhorizontal Paleozoic strata unconformably overlying a Precambrian basement whose surface has an apparent regional easterly dip of 1–2°. Minor apparent normal offsets, possibly on the order of tens of meters, occur within the Paleozoic section. The generally poorly reflective unconformity may be locally characterized by topographic relief on the order of 100 m; (2) Apparent local displacement on the order of 90 m at the level of the Black River Group diminishes upward to little or no apparent offset of Queenston Shale; (3) Within the limited seismic sections, there appears to be no evidence that the complete upper crustal section is vertically or subvertically offset; (4) Dipping structure in the Paleozoic strata (15° to 35°) resembles some underlying Precambrian basement elements; (5) The surface continuity of inferred faults constituting the Clarendon–Linden system is not strongly supported by the seismic data.Beneath the Paleozoic strata, the seismic sections show both linear and arcuate reflector geometry with easterly apparent dips of 15° to 35° similar to the deep structures imaged on seismic lines from nearby Lake Ontario and on Lithoprobe lines to the north. The similarity supports an extension of easterly dipping Central Metasedimentary Belt structures of the Grenville orogen from southern Ontario to beneath western New York State.From a comparison of the magnetic and gravity fields with the New York seismic sections, we suggest: (1) The largely nonmagnetic Paleozoic strata appear to contribute negligibly to magnetic anomalies. Seismically imaged fractures in the New York Paleozoic strata appear to lie mainly west of a positive gravity anomaly. The relationship between magnetic and gravity anomalies and the changes in the geometry of interpreted Precambrian structures remains enigmatic; (2) North to northeast trending curvilinear magnetic and gravity anomalies parallel, but are not restricted to the principal trend of the postulated Clarendon–Linden fault system. Paleozoic fractures of the Clarendon–Linden system may partly overlie a southward extension of the Composite Arc Belt boundary zone.  相似文献   
17.
A three-dimensional (3D) density model, approximated by two regional layers—the sedimentary cover and the crystalline crust (offshore, a sea-water layer was added), has been constructed in 1° averaging for the whole European continent. The crustal model is based on simplified velocity model represented by structure maps for main seismic horizons—the “seismic” basement and the Moho boundary. Laterally varying average density is assumed inside the model layers. Residual gravity anomalies, obtained by subtraction of the crustal gravity effect from the observed field, characterize the density heterogeneities in the upper mantle. Mantle anomalies are shown to correlate with the upper mantle velocity inhomogeneities revealed from seismic tomography data and geothermal data. Considering the type of mantle anomaly, specific features of the evolution and type of isostatic compensation, the sedimentary basins in Europe may be related into some groups: deep sedimentary basins located in the East European Platform and its northern and eastern margins (Peri-Caspian, Dnieper–Donets, Barents Sea Basins, Fore–Ural Trough) with no significant mantle anomalies; basins located on the activated thin crust of Variscan Western Europe and Mediterranean area with negative mantle anomalies of −150 to −200×10−5 ms−2 amplitude and the basins associated with suture zones at the western and southern margins of the East European Platform (Polish Trough, South Caspian Basin) characterized by positive mantle anomalies of 50–150×10−5 ms−2 magnitude. An analysis of the main features of the lithosphere structure of the basins in Europe and type of the compensation has been carried out.  相似文献   
18.
Takeshi Kudo  Koshun Yamaoka   《Tectonophysics》2003,367(3-4):203-217
The driving force for the basin subsiding against isostatic balance in and around Lake Biwa in the Kinki district, Japan is discussed. The lake region is characterized by strong negative Bouguer anomalies, especially by a steep horizontal gradient zone of gravity anomaly running along the western margin of the lake. The large negative anomaly (>50 mgal) cannot be explained by low-density sediments beneath it. A down-warping structure extending to the Moho depth should be taken into account. This conjecture has been strongly supported by a short-period receiver function imaging, which shows a clear offset of about 8 km for the Moho discontinuity under the steep gravity gradient zone.A question arises as to what is the driving force to create such a large down-warping structure. We consider that the subduction of the shallow-dipping slab under the region (Philippine Sea Slab) may cause crustal deformation by dragging the viscous mantle downward. In order to verify this model, we simulated the induced mantle flow due to the subduction of the Philippine Sea Slab and the pressure distribution on the crust–mantle boundary. This numerical experiment showed that the induced flow makes a strong negative pressure zone under the lake region if the slab has a vertical offset along the direction of subduction. This offset of the slab is consistent with plate models deduced from hypocentral distributions and Sp phases of the deep-focus earthquakes.  相似文献   
19.
Africa’s landscape is dominated by a manifold of second-order epeirogenic structures superimposed on a first-order bimodal topography. Bivariate regression analysis of Africa’s surface topography shows that this is a complexly folded surface with regionally elevated areas in southern and eastern Africa, and a topographically low northern and western Africa. The apparent spatial relationships between these features are analysed using anomaly correlation between surface topography and free-air gravity anomalies. Occurrences of positively correlated features between gravity and topography in Africa are found to be limited to second-order epeirogenic features. Geophysical modelling and geologic evidence indicate that Africa’s bimodal topography is genetically distinct from these second-order features, and linked to sources as deep as the sublithospheric mantle. The age, measured and modelled elevation of the bimodal topography require that topographic uplift of south-central Africa be episodic. We infer from our findings together with relative sea-level changes, that the near-bimodality of Africa’s topography is an ancient feature inherited at least from upper Paleozoic times. Our reconstructed paleotopography suggests that Africa was largely a low-lying continent dominated by its cratons, and that basement distribution disregards the present-day uplift patterns of Africa.  相似文献   
20.
About half a million marine gravity measurements over a 30×30 area centered on Japan have been processed and adjusted to produce a new free-air gravity map from a 5′×5′ grid. This map seems to have a better resolution than those previously published as measured by its correlation with bathymetry. The grid was used together with a high-degree and -order spherical harmonics geopotential model to compute a detailed geoid with two methods: Stokes integral and collocation. Comparisons with other available geoidal surfaces derived either from gravity or from satellite altimetry were made especially to test the ability of this new geoid at showing the sea surface topography as mapped by the Topex/Poseidon satellite. Over 2 months (6 cycles) the dynamic topography at ascending passes in the region (2347N and 123147E) was mapped to study the variability of the Kuroshio current. Received: 15 July 1994 / Accepted: 17 February 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号