首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12248篇
  免费   1214篇
  国内免费   1817篇
测绘学   981篇
大气科学   925篇
地球物理   1619篇
地质学   4106篇
海洋学   1172篇
天文学   5342篇
综合类   437篇
自然地理   697篇
  2024年   31篇
  2023年   86篇
  2022年   223篇
  2021年   245篇
  2020年   306篇
  2019年   408篇
  2018年   268篇
  2017年   329篇
  2016年   337篇
  2015年   379篇
  2014年   662篇
  2013年   687篇
  2012年   665篇
  2011年   863篇
  2010年   825篇
  2009年   1174篇
  2008年   1109篇
  2007年   974篇
  2006年   905篇
  2005年   780篇
  2004年   627篇
  2003年   569篇
  2002年   453篇
  2001年   396篇
  2000年   375篇
  1999年   345篇
  1998年   267篇
  1997年   133篇
  1996年   134篇
  1995年   92篇
  1994年   96篇
  1993年   123篇
  1992年   65篇
  1991年   56篇
  1990年   44篇
  1989年   42篇
  1988年   35篇
  1987年   15篇
  1986年   16篇
  1985年   25篇
  1984年   22篇
  1983年   18篇
  1982年   19篇
  1981年   7篇
  1980年   11篇
  1979年   2篇
  1978年   10篇
  1977年   16篇
  1954年   4篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
951.
Evidence of recent gully activity on Mars has been reported based on the formation of new light toned deposits within the past decade, the origin of which remains controversial. Analogous recent light toned gully features have formed by liquid water activity in the Atacama Desert on Earth. These terrestrial deposits leave no mineralogical trace of water activity but rather show an albedo difference due to particle size sorting within a fine-grained mudflow. Therefore, spectral differences indicating varying mineralogy between a recent gully deposit and the surrounding terrain may not be the most relevant criteria for detecting water flow in arid environments. Instead, variation in particle size between the deposit and surrounding terrain is a possible discriminator to identify a water-based flow. We show that the Atacama deposit is similar to the observed Mars gully deposits, and both are consistent with liquid water activity. The light-toned Mars gully deposits could have formed from dry debris flows, but a liquid water origin cannot be ruled out because not all liquid water flows leave hydrated minerals behind on the surface. Therefore, the Mars deposits could be remnant mudflows that formed on Mars within the last decade.  相似文献   
952.
Patrick Michel  Marco Delbo 《Icarus》2010,209(2):520-534
In this paper, we present our study of the orbital and thermal evolutions, due to solar radiative heating, of four near-Earth asteroids (NEAs) considered as potential target candidates for sample return space missions to primitive asteroids. We used a dynamical model of the NEA population to estimate the most likely source region and orbital history of these objects. Then, for each asteroid, we integrated numerically over their entire lifetime a set of 14 initially indistinguishable orbit (clones), obtained by small variations of the nominal initial conditions. Using a thermal model, we then computed surface and sub-surface temperatures of these bodies during their dynamical history. Our aim is to determine whether these bodies are likely to have experienced high temperature level, and whether great temperature changes can be expected due to the orbital changes as well as their maximum and minimum values. Such information is important in the framework of sample return space missions whose goal is to bring back pristine materials. The knowledge of the temperature range of materials at different depth over the orbital evolution of potential targets can help defining sampling strategies that ensure the likelihood that unaltered material will be brought back. Our results suggest that for all the considered potential targets, the surface has experienced for some time temperatures greater than 400 K and at most 500 K with 50% probability. This probability drops rapidly with increasing temperature. Sub-surface materials at a depth of only 3 cm are much more protected from high temperature and generally do not reach temperatures exceeding 450 K (with 50% probability). They should thus be unaltered at this depth at least from a Sun-driven heating point of view. On the other hand, surface material for some of the considered objects can have a range of temperature which can make them less reliable as pristine materials. However, it is assumed here that the same material is constantly exposed to solar heat, while regolith turnover may occur. The latter can be caused by different processes such as seismic shaking and/or impact cratering. This would reduce the total time that materials are exposed to a certain temperature. Thus, it is very likely that a sample collected from any of the four considered targets, or any primitive NEA with similar dynamical properties, will have components that will be thermally unaltered as long as some of it comes from only 3 to 5 cm depth. Such a depth is not considered difficult to reach with some of the current designs of sampling devices.  相似文献   
953.
A. Cellino  M. Delbò 《Icarus》2010,209(2):556-563
We present the results of a campaign of polarimetric observations of small asteroids belonging to the Karin and Koronis families, carried out at the ESO Cerro Paranal Observatory using the VLT-Kueyen 8-m telescope. The Karin family is known to be very young, having likely been produced by the disruption of an original member of the Koronis family less than 6 Myr ago. The purpose of our study was to derive polarimetric properties for a reasonable sample of objects belonging to the two families, in order to look for possible systematic differences between them, to be interpreted in terms of differences in surface properties, in particular albedo. In turn, systematic albedo differences might be caused by different times of exposure to space weathering processes experienced by the two groups of objects. The results of our analysis indicate that no appreciable difference exists between the polarimetric properties of Karin and Koronis members. We thus find that space-weathering mechanisms may be very efficient in affecting surface properties of S-class asteroids on very short timescales. This result complements some independent evidence found by recent spectroscopic studies of very young families.  相似文献   
954.
This study presents the latest results on the mesospheric CO2 clouds in the martian atmosphere based on observations by OMEGA and HRSC onboard Mars Express. We have mapped the mesospheric CO2 clouds during nearly three martian years of OMEGA data yielding a cloud dataset of ∼60 occurrences. The global mapping shows that the equatorial clouds are mainly observed in a distinct longitudinal corridor, at seasons Ls = 0-60° and again at and after Ls = 90°. A recent observation shows that the equatorial CO2 cloud season may start as early as at Ls = 330°. Three cases of mesospheric midlatitude autumn clouds have been observed. Two cloud shadow observations enabled the mapping of the cloud optical depth (τ = 0.01-0.6 with median values of 0.13-0.2 at λ = 1 μm) and the effective radii (mainly 1-3 μm with median values of 2.0-2.3 μm) of the cloud crystals. The HRSC dataset of 28 high-altitude cloud observations shows that the observed clouds reside mainly in the altitude range ∼60-85 km and their east-west speeds range from 15 to 107 m/s. Two clouds at southern midlatitudes were observed at an altitude range of 53-62 km. The speed of one of these southern midlatitude clouds was measured, and it exhibited west-east oriented speeds between 5 and 42 m/s. The seasonal and geographical distribution as well as the observed altitudes are mostly in line with previous work. The LMD Mars Global Climate Model shows that at the cloud altitude range (65-85 km) the temperatures exhibit significant daily variability (caused by the thermal tides) with the coldest temperatures towards the end of the afternoon. The GCM predicts the coldest temperatures of this altitude range and the season Ls = 0-30° in the longitudinal corridor where most of the cloud observations have been made. However, the model does not predict supersaturation, but the GCM-predicted winds are in fair agreement with the HRSC-measured cloud speeds. The clouds exhibit variable morphologies, but mainly cirrus-type, filamented clouds are observed (nearly all HRSC observations and most of OMEGA observations). In ∼15% of OMEGA observations, clumpy, round cloud structures are observed, but very few clouds in the HRSC dataset show similar morphology. These observations of clumpy, cumuliform-type clouds raise questions on the possibility of mesospheric convection on Mars, and we discuss this hypothesis based on Convective Available Potential Energy calculations.  相似文献   
955.
A significant opaque component in Mercury’s crust is inferred based on albedo and spectral observations. Previous workers have favored iron-titanium bearing oxide minerals as the spectrally neutral opaque. A consequence of this hypothesis is that Mercury’s surface would have a high FeO content. An array of remote sensing techniques have not provided definitive constraints on the FeO content of Mercury’s surface. However, spectral observations have not detected a diagnostic 1 μm absorption band and have thus limited the FeO in coexisting silicates to <2 wt.% FeO. In this paper, we assess equilibrium among oxide and silicate minerals to constrain the distribution of iron between opaque oxides and silicates under a variety of environmental conditions. Equilibrium modeling is favored here because the geologic process that produced Mercury’s low-albedo intermediate terrain must have occurred globally, which favors a common widespread igneous process. Based on our modeling, we find that iron-rich ilmenite cannot occur with silicates that do not display a 1 μm absorption feature unless plagioclase abundances are high. However, such high plagioclase abundances are precluded by Mercury’s low albedo. Incorporating equilibrium crystallization modeling with spectral and albedo constraints we find the iron abundance of Mercury’s intermediate terrain is ?10 wt.% FeO. This intermediate iron composition matches constraints provided by visible albedo and total neutron absorption observed by MESSENGER. In fact, the total neutron absorption of mixtures of oxide, plagioclase, olivine and pyroxene for the oxide abundances estimated for Mercury, favor Mg-rich members of the ilmenite-geikielite solid-solution series. This work offers compositional constraints for Fe, Ti, and Mg that will be testable by various MESSENGER instrument data sets after it begins its orbital mission.  相似文献   
956.
The surface composition of Europa is of great importance for understanding both the internal evolution of Europa and its putative ocean. The Near Infrared Mapping Spectrometer (NIMS) investigation on Galileo observed Europa and the other Galilean satellites from 0.7 to 5.2 μm with spatial resolution down to a few kilometers during flybys by the spacecraft as it orbited Jupiter. These data have been analyzed and results published over the life of the Galileo mission and afterward. One result was the discovery of hydrated minerals at some locations on Europa and Ganymede. The data are noisy, especially for Europa, due to radiation affecting the NIMS electronics and detectors, and other artifacts are also present. The NIMS data are now being reprocessed using the accumulated knowledge gained over the entire missions to remove noise spikes and compensate for some other defects in the data. We are analyzing these reprocessed data in an attempt to defined better the nature of the hydrate spectral features and improve their interpretation. We report here on analyses of two NIMS reprocessed observations for the 0.7-3-μm region. A revised hydrate spectrum is calculated and mapped in detail across two lineaments. The spectrum shows the expected distorted water features but little or no spectral structure in these features. A narrow, weak spectral feature appears at 1.344 μm, which is weakly correlated with lower albedo. Several other weak features may be present but are difficult to confirm in these limited data sets. The hydrate signature shows the greatest strength within and toward the center of the lineaments, confirming and strengthening the association of the hydrate with these endogenic features. This trend may indicate that the material in the lineaments is youngest toward the center and has more water frost coverage toward the edge. A small, visually dark, circular feature has a spectrum that shows both hydrate and crystalline water ice features and perhaps contains a hydrate different in spectral characteristics and perhaps composition than found in the lineament.  相似文献   
957.
The region surrounding the Mawrth Vallis outflow channel on Mars hosts thick layered deposits containing diverse phyllosilicate minerals. Here we report detection of the Ca-sulfate bassanite on the outflow channel floor, requiring a more complex aqueous chemistry than previously inferred for this region. The sulfate-bearing materials underlie phyllosilicate-bearing strata, and provide an opportunity for testing proposed models of martian geochemical evolution with a future landed mission.  相似文献   
958.
Candidate examples of impact melt flows and debris flows have been identified at Tooting crater, an extremely young (<2 Myr), 29 km diameter impact crater in Amazonis Planitia, Mars. Using HiRISE and CTX images, and stereo-derived digital elevation models derived from these images, we have studied the rim and interior wall of Tooting crater to document the morphology and topography of several flow features in order to constrain the potential flow formation mechanisms. Four flow types have been identified; including possible impact melt sheets and three types of debris flows. The flow features are all located within 2 km of the rim crest on the southern rim or lie on the southern interior wall of the crater ∼1500 m below the rim crest. Extensive structural failure has modified the northern half of the crater inner wall and we interpret this to have resulted in the destruction of any impact melt emplaced, as well as volatile-rich wall rock. The impact melt flows are fractured on the meter to decameter scale, have ridged, leveed lobes and flow fronts, and cover an area >6 km × 5 km on the southern rim. The debris flows are found on both the inner wall and rim of the crater, are ∼1-2 km in length, and vary from a few tens of meters to >300 m in width. These flows exhibit varying morphologies, from a channelized, leveed flow with arcuate ridges in the channel, to a rubbly flow with a central channel but no obvious levees. The flows indicate that water existed within the target rocks at the time of crater formation, and that both melt and fluidized sediment was generated during this event.  相似文献   
959.
Z. Peeters  R.L. Hudson  M.H. Moore 《Icarus》2010,210(1):480-487
The radiation chemistry, thermal stability, and vapor pressure of solid-phase carbonic acid (H2CO3) have been studied with mid-infrared spectroscopy. A new procedure for measuring this molecule’s radiation stability has been used to obtain intrinsic IR band strengths and half-lives for radiolytic destruction. We report, for the first time, measurements of carbonic acid’s vapor pressure (0.290-2.33 × 10−11 bar for 240-255 K) and its enthalpy of sublimation (71 ± 9 kJ mol−1). We also report the first observation of a chemical reaction involving solid-phase carbonic acid. Possible applications of these findings are discussed, with an emphasis on the outer Solar System icy surfaces.  相似文献   
960.
We have mapped 18,000+ circular mounds in a portion of southern Acidalia Planitia using their sizes, shapes, and responses in Nighttime IR. We estimate that 40,000+ of these features could occur in the area, with a distribution generally corresponding to the southern half of the proposed Acidalia impact basin. The mounds have average diameters of about 1 km and relief up to 180 m and most overlie units mapped as Early Amazonian.High resolution images of mound surfaces show relatively smooth veneers, apron-like extensions onto the plains, moats, and concentric circular crestal structures. Some images show lobate and flow-like features associated with the mounds. Albedo of the mounds is generally higher than that of the surrounding plains. Visible and near-infrared spectra suggest that the mounds and plains have subtle mineralogical differences, with the mounds having enhanced coatings or possibly greater quantities of crystalline ferric oxides.Multiple analogs for these structures were assessed in light of new orbital data and regional mapping. Mud volcanism is the closest terrestrial analogy, though the process in Acidalia would have had distinctly martian attributes. This interpretation is supported by the geologic setting of the Acidalia which sits at the distal end of the Chryse-Acidalia embayment into which large quantities of sediments were deposited through the Hesperian outflow channels. In its distal position, Acidalia would have been a depocenter for accumulation of mud and fluids from outflow sedimentation.Thus, the profusion of mounds in Acidalia is likely to be a consequence of this basin’s unique geologic setting. Basinwide mud eruption may be attributable to overpressure (developed in response to rapid outflow deposition) perhaps aided by regional triggers for fluid expulsion related to events such as tectonic or hydrothermal pulses, destabilization of clathrates, or sublimation of a frozen body of water. Significant release of gas may have been involved, and the extensive mud volcanism could have created long-lived conduits for upwelling groundwaters, providing potential habitats for an in situ microbiota.Mud volcanism transports minimally-altered materials from depth to the surface, and mud volcanoes in Acidalia, therefore, could provide access to samples from deep zones that would otherwise be inaccessible. Since the distal setting of Acidalia also would favor concentration and preservation of potentially-present organic materials, samples brought to the surface by mud volcanism could include biosignatures of possible past or even present life. Accordingly, the mounds of Acidalia may offer a new class of exploration target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号