首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   115篇
  国内免费   72篇
测绘学   355篇
大气科学   41篇
地球物理   194篇
地质学   245篇
海洋学   53篇
天文学   22篇
综合类   52篇
自然地理   120篇
  2024年   1篇
  2023年   14篇
  2022年   42篇
  2021年   41篇
  2020年   71篇
  2019年   50篇
  2018年   45篇
  2017年   68篇
  2016年   75篇
  2015年   69篇
  2014年   66篇
  2013年   85篇
  2012年   31篇
  2011年   45篇
  2010年   27篇
  2009年   25篇
  2008年   24篇
  2007年   32篇
  2006年   25篇
  2005年   41篇
  2004年   31篇
  2003年   32篇
  2002年   23篇
  2001年   17篇
  2000年   11篇
  1999年   5篇
  1998年   10篇
  1997年   28篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1954年   1篇
排序方式: 共有1082条查询结果,搜索用时 90 毫秒
21.
Mass and energy transfer between soil, vegetation and atmosphere is the process that allows to maintain an adequate energy and water balance in the earth–atmosphere system. However, the evaluation of the energy balance components, such as the net radiation and the sensible and latent heat fluxes, is characterized by significant uncertainties related to both the dynamic nature of heat transfer processes and surfaces heterogeneity. Therefore, a detailed land use classification and an accurate evaluation of vegetation spatial distribution are required for an accurate estimation of these variables. For this purpose, in the present article, a pixel‐oriented supervised classification was applied to obtain land use maps of the Basilicata region in Southern Italy by processing three Landsat TM and ETM+ satellite images. An accuracy analysis based on the overall accuracy index and the agreement Khat of Cohen coefficient showed a good performance of the applied classification methodology and a good quality of the obtained maps. Subsequently, these maps were used in the application of a simplified two‐source energy balance model for estimating the actual evapotranspiration at a regional scale. The comparison between the simulations made by applying the simplified two‐source energy balance model and the measurements of evapotranspiration at a lysimetric station located in the study area showed the applicability and the validity of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
22.
Current methods to estimate snow accumulation and ablation at the plot and watershed levels can be improved as new technologies offer alternative approaches to more accurately monitor snow dynamics and their drivers. Here we conduct a meta‐analysis of snow and vegetation data collected in British Columbia to explore the relationships between a wide range of forest structure variables – obtained from Light Detection and Ranging (LiDAR), hemispherical photography (HP) and Landsat Thematic Mapper – and several indicators of snow accumulation and ablation estimated from manual snow surveys and ultrasonic range sensors. By merging and standardizing all the ground plot information available in the study area, we demonstrate how LiDAR‐derived forest cover above 0.5 m was the variable explaining the highest percentage of absolute peak snow water equivalent (SWE) (33%), while HP‐derived leaf area index and gap fraction (45° angle of view) were the best potential predictors of snow ablation rate (explaining 57% of variance). This study reveals how continuous SWE data from ultrasonic sensors are fundamental to obtain statistically significant relationships between snow indicators and structural metrics by increasing mean r2 by 20% when compared to manual surveys. The relationships between vegetation and spectral indices from Landsat and snow indicators, not explored before, were almost as high as those shown by LiDAR or HP and thus point towards a new line of research with important practical implications. While the use of different data sources from two snow seasons prevented us from developing models with predictive capacity, a large sample size helped to identify outliers that weakened the relationships and suggest improvements for future research. A concise overview of the limitations of this and previous studies is provided along with propositions to consistently improve experimental designs to take advantage of remote sensing technologies, and better represent spatial and temporal variations of snow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
23.
Up-to-date forest inventory information relating the characteristics of managed and natural forests is fundamental to sustainable forest management and required to inform conservation of biodiversity and assess climate change impacts and mitigation opportunities. Strategic forest inventories are difficult to compile over large areas and are often quickly outdated or spatially incomplete as a function of their long production cycle. As a consequence, automated approaches supported by remotely sensed data are increasingly sought to provide exhaustive spatial coverage for a set of core attributes in a timely fashion. The objective of this study was to demonstrate the integration of current remotely-sensed data products and pre-existing jurisdictional inventory data to map four forest attributes of interest (stand age, dominant species, site index, and stem density) for a 55 Mha study region in British Columbia, Canada. First, via image segmentation, spectrally homogenous objects were derived from Landsat surface-reflectance pixel composites. Second, a suite of Landsat-based predictors (e.g., spectral indices, disturbance history, and forest structure) and ancillary variables (e.g., geographic, topographic, and climatic) were derived for these units and used to develop predictive models of target attributes. For the often difficult classification of dominant species, two modelling approaches were compared: (a) a global Random Forests model calibrated with training samples collected over the entire study area, and (b) an ensemble of local models, each calibrated with spatially constrained local samples. Accuracy assessment based upon independent validation samples revealed that the ensemble of local models was more accurate and efficient for species classification, achieving an overall accuracy of 72% for the species which dominate 80% of the forested areas in the province. Results indicated that site index had the highest agreement between predicted and reference (R2 = 0.74, %RMSE = 23.1%), followed by stand age (R2 = 0.62, %RMSE = 35.6%), and stem density (R2 = 0.33, %RMSE = 65.2%). Inventory attributes mapped at the image-derived unit level captured much finer details than traditional polygon-based inventory, yet can be readily reassembled into these larger units for strategic forest planning purposes. Based upon this work, we conclude that in a multi-source forest monitoring program, spatially localized and detailed characterizations enabled by time series of Landsat observations in conjunction with ancillary data can be used to support strategic inventory activities over large areas.  相似文献   
24.
Urban sprawl has become a global phenomenon as an outcome of growing population and rapid urbanization. Previous studies have addressed the rising incidence of uncontrollable urban development, particularly in peri-urban areas of cities, leading to chronic urban sprawl. The city of Guwahati, a million city in north east India, has expanded significantly in recent years. In this article, the links between population and growth of built-up areas were examined using geo-spatial techniques and remotely sensed datasets. The results indicate that the sprawl has accentuated in recent years. The intensity of land use remained uneven due to marked variations in the distribution of built-up areas, plausibly an outcome of unplanned urban growth. If current trends are anything to go by, future urban sprawl could pose serious threats to the vulnerable eco-sensitive and peri-urban areas of Guwahati. Secondary cities have unfortunately received scant attention in urban policy research, and Guwahati, epitomizes urban woes in a developing country.  相似文献   
25.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
26.
计璐艳  尹丹艳  宫鹏 《遥感学报》2019,23(4):717-729
准确提取湖泊围网区域的时空分布信息对湖泊的保护和可持续发展具有重要意义。本文以阳澄湖为研究区域,收集该地区1984年—2017年所有的Landsat 5和Landsat 8影像(共计396景),提出了结合光谱和纹理特征的围网提取新算法,同时利用时间序列滤波消除年际间因数据不一致造成的偏差。以高清影像人工解译作为参考,阳澄湖围网提取结果的生产者精度在72.57%—88.53%,用户者精度在79.79%—98.10%,围网面积变化与文献记录吻合。结果表明,阳澄湖围网经历了"无围网期"(1984年—1994年)、"快速增长期"(1994年—1998年)、"巅峰期"(1999年—2002年)、"快速下降期"(2003年—2006年)和"稳定期"(2007年—2017年)5个阶段,最高达到100 km2,目前稳定在30 km2;通过研究围网区植被指数发现,2002年之后围网区浮水植物的种植面积增大;通过对比水质数据发现,2002年至今持续15年的围网拆除并未使阳澄湖恢复到80年代无围网养殖时期的II类水,其水质依然处于Ⅲ—Ⅳ类。因此在湖泊养殖开发过程中,政府应该坚持可持续发展道路,在不破坏湖泊水质的基础上发展湖泊经济。  相似文献   
27.
针对水体信息提取时,传统算法不能较好地解决山体阴影被误提为水体的问题,引入多用于高光谱数据处理的光谱角匹配算法,以Land-sat8 OLI(band1-band7)为数据源,以黄河小浪底水库周边区域为实验区,开展水体信息提取研究,结果显示:水体指数法和波段关系提取的结果中有大量的山体阴影信息,提取精度不超过30%,而光谱角匹配法提取结果受阴影的影响较小,提取精度在99%以上。  相似文献   
28.
利用Landsat数据,结合NDWI与MNDWI提取水体信息的特点提出了一种新的水体指数NMWI,并结合OSTU算法自适应地确定最佳分割阈值,完成了对海洋、河流、湖泊和水库4种主要的典型水体信息的自动提取,均取得了较好的效果。  相似文献   
29.
Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986–2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and cloud contamination can be sources of error. We discuss the NAFD image selection and processing stream (NISPS) that was designed to minimize these sources of error. The NISPS image quality assessments highlighted issues with the Landsat archive and metadata including inadequate georegistration, unreliability of the pre-2009 L5 cloud cover assessments algorithm, missing growing-season imagery and paucity of clear views. Assessment maps of Landsat 5–7 image quantities and qualities are presented that offer novel perspectives on the growing-season archive considered for this study. Over 150,000+ Landsat images were considered for the NAFD project. Optimally, one high quality cloud-free image in each year or a total of 12,152 images would be used. However, to accommodate data gaps and cloud/shadow contamination 23,338 images were needed. In 220 specific path-row image years no acceptable images were found resulting in data gaps in the annual national map products.  相似文献   
30.
Image compositing is a multi-objective optimization process. Its goal is to produce a seamless cloud and artefact-free artificial image. This is achieved by aggregating image observations and by replacing poor and cloudy data with good observations from imagery acquired within the timeframe of interest. This compositing process aims to minimise the visual artefacts which could result from different radiometric properties, caused by atmospheric conditions, phenologic patterns and land cover changes. It has the following requirements: (1) image compositing must be cloud free, which requires the detection of clouds and shadows, and (2) the image composite must be seamless, minimizing artefacts and visible across inter image seams. This study proposes a new rule-based compositing technique (RBC) that combines the strengths of several existing methods. A quantitative and qualitative evaluation is made of the RBC technique by comparing it to the maximum NDVI (MaxNDVI), minimum red (MinRed) and maximum ratio (MaxRatio) compositing techniques. A total of 174 Landsat TM and ETM+ images, covering three study sites and three different timeframes for each site, are used in the evaluation. A new set of quantitative/qualitative evaluation techniques for compositing quality measurement was developed and showed that the RBC technique outperformed all other techniques, with MaxRatio, MaxNDVI, and MinRed techniques in order of performance from best to worst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号