首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1021篇
  免费   11篇
  国内免费   14篇
测绘学   22篇
大气科学   5篇
地球物理   53篇
地质学   54篇
海洋学   1篇
天文学   887篇
综合类   4篇
自然地理   20篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   13篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   12篇
  2012年   11篇
  2011年   128篇
  2010年   172篇
  2009年   113篇
  2008年   128篇
  2007年   74篇
  2006年   102篇
  2005年   85篇
  2004年   75篇
  2003年   39篇
  2002年   27篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1985年   1篇
排序方式: 共有1046条查询结果,搜索用时 62 毫秒
11.
The gray crystalline hematite at Meridiani Planum first discovered by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) instrument occurs as spherules that have been interpreted as concretions. Analysis of the TES and mini-TES spectra shows that no 390 cm−1 feature is present in the characteristic martian hematite spectrum. Here, we incorporate the mid-IR optical constants of hematite into a simple Fresnel reflectance model to understand the effect of emission angle and crystal morphology on the presence or absence of the 390 cm−1 feature in an IR hematite spectrum. Based on the results we offer two models for the internal structure of the martian hematite spherules.  相似文献   
12.
The planet Mars lacks, today, a planetary, dynamic magnetic field, but strong, intense, localized magnetic fields of lithospheric origin, one to two orders of magnitude larger than the terrestrial lithospheric field, are present. This lithospheric magnetic field is the result of magnetization processes in the presence of a magnetic dynamo and of demagnetization processes after the dynamo shutdown, such as impact or volcanoes. This crude scenario can be more accurately specified by interpreting global and local models of the current magnetic field of Mars. Some specific areas are studied, including the intensely magnetized Terra Sirenum, as well as the magnetic anomaly associated with Apollinaris Patera. Magnetic minerals could be of primary and/or secondary origin; this latter would imply an early hydration of a basaltic crust. A scenario, in which Mars experienced a major polar wander due to the Tharsis bulge, prior to the cessation of its dynamo, is proposed and discussed.  相似文献   
13.
We present evidence for a decrease in the magnitude of Tharsis-circumferential compressive stress during the Late Hesperian to the Middle Amazonian based on chronologic changes in the predominant style of faulting in southern Amazonis Planitia. Using high-resolution MOLA topography, we identify a population of strike-slip faults that exhibit Middle Amazonian-aged displacements of regional chrono-stratigraphic units. These strike-slip faults are adjacent to an older population of previously documented Late Hesperian-aged thrust faults (wrinkle ridges). Along-strike orientations of these thrust and strike-slip faults reveal the Tharsis-radial stress to be the area's most compressive remote principal stress and that this stress orientation and magnitude persisted throughout the Late Hesperian to the Middle Amazonian. We show that the change in the predominant style of faulting from thrust faulting to strike-slip faulting during this time requires a decrease of the Tharsis-circumferential compressive stress to a magnitude less than lithostatic load, with negligible change in stress orientation.  相似文献   
14.
Displacement-length (D/L)scaling relations for normal and thrust faults from Mars, and thrust faults from Mercury, for which sufficiently accurate measurements are available, are consistently smaller than terrestrial D/L ratios by a factor of about 5, regardless of fault type (i.e. normal or thrust). We demonstrate that D/L ratios for faults scale, to first order, with planetary gravity. In particular, confining pressure modulates: (1) the magnitude of shear driving stress on the fault; (2) the shear yield strength of near-tip rock; and (3) the Young's (or shear) modulus of crustal rock. In general, all three factors decrease with gravity for the same rock type and pore-pressure state (e.g. wet conditions). Faults on planets with lower surface gravities, such as Mars and Mercury, demonstrate systematically smaller D/L ratios than faults on larger planets, such as Earth. Smaller D/L ratios of faults on Venus and the Moon are predicted by this approach, and we infer still smaller values of D/L ratio for faults on icy satellites in the outer solar system. Collection of additional displacement-length and down-dip height data from terrestrial normal, strike-slip, and thrust faults, located within fold-and-thrust belts, plate margins, and continental interiors, is required to evaluate the influence of fault shape and progressive deformation on the scaling relations for faults from Earth and elsewhere.  相似文献   
15.
The release of methane from crater sites following meteorite impact is a possible consequence of the thermal alteration of organic matter, or tapping of reservoired gas of biogenic or abiogenic origin. At least the latter is feasible on Mars. Methane and higher hydrocarbons are susceptible to polymerization and precipitation by radioactive minerals. Where such minerals are present in impact target rocks, the craters can be a preferred site for carbon concentration, and the formation of complex organic molecules. On icy bodies, such as Titan and Europa, methane released by impact could be a fuel for prebiotic chemistry involving other forms of irradiation.  相似文献   
16.
火星生命研究的进展与前景   总被引:3,自引:0,他引:3  
关于火星是否存在或曾经存在生命的争论由来已久。有人以ALH84001火星陨石新鲜破裂面上的大量碳酸盐小球体和多环芳香烃(PAHs)为主要依据,推论火星至少在13~36亿 aBP前很可能有生命形态存在。然而,很多人认为ALH84001陨石的各种特性可以是非生物成因的。由于地球上的生物在超过115℃的温度下很难存活(火星可与之类比),争论的焦点逐渐集中在碳酸盐球体的形成温度上。也有研究者关注该陨石上有机物质的来源问题。对ALH84001陨石的综合学科研究提出了互相矛盾的证据。综述了自1996年以来在国外各种主要期刊上发表的关于 ALH84001陨石与火星生命的研究成果(也包括了一些对其他火星陨石的研究),认为目前尚不能断言火星生命存在与否。对火星继续深入探索以获取进一步的证据是十分必要的。以美国国家航空和宇航局(NASA)Odys sey宇宙飞船起始的火星探测计划将引发新一轮火星生命研究的热潮。  相似文献   
17.
18.
The MER rover Opportunity has carried out the first outcrop-scale investigation of ancient sedimentary rocks on Mars. The rocks, exposed in craters and along fissures in Meridiani Planum, are sandstones formed via the erosion and re-deposition of fine grained siliciclastics and evaporites derived from the chemical weathering of olivine basalts by acidic waters. A stratigraphic section more than seven meters thick measured in Endurance crater is dominated by eolian dune and sand sheet facies; the uppermost half meter, however, exhibits festoon cross lamination at a length scale that indicates subaqueous deposition, likely in a playa-like interdune setting. Silicates and sulfate minerals dominate outcrop geochemistry, but hematite and Fe3D3 (another ferric iron phase) make up as much as 11% of the rocks by weight. Jarosite in the outcrop matrix indicates precipitation at low pH. Cements, hematitic concretions, and crystal molds attest to a complex history of early diagenesis, mediated by ambient ground waters. The depositional and early diagenetic paleoenvironment at Meridiani was arid, acidic, and oxidizing, a characterization that places strong constraints on astrobiologial inference.  相似文献   
19.
New data returned from the Mars Exploration Rover (MER) mission have revealed abundant evaporites in the sedimentary record at Meridiani Planum. A working hypothesis for Meridiani evaporite formation involves the evaporation of fluids derived from the weathering of martian basalt and subsequent diagenesis. On Earth, evaporite formation in exclusively basaltic settings is rare. However, models of the evaporation of fluids derived from experimentally weathering synthetic martian basalt provide insight into possible formation mechanisms. The thermodynamic database assembled for this investigation includes both Fe2+ and Fe3+ in Pitzer's ion interaction equations to evaluate Fe redox disequilibrium at Meridiani Planum. Modeling results suggest that evaporation of acidic fluids derived from weathering olivine-bearing basalt should produce Mg, Ca, and Fe-sulfates such as jarosite and melanterite. Calculations that model diagenesis by fluid recharge predict the eventual breakdown of jarosite to goethite as well as the preservation of much of the initial soluble evaporite component at modeled porosity values appropriate for relevant depositional environments (< 0.30). While only one of several possible formation scenarios, this simple model is consistent with much of the chemical and mineralogical data obtained on Meridiani Planum outcrop.  相似文献   
20.
Martian Topography: Scaling, Craters, and High-Order Statistics   总被引:1,自引:0,他引:1  
The high-order structure functions of Mars topography reveal three specific ranges of scales: (1) scaling range at small scales where the structure functions exhibit scaling behavior; (2) transition range where the structure functions continue to grow but do not reveal scaling; and (3) saturation range at large scales where the structure functions saturate. The scaling and saturation ranges are explored in detail in respect to scaling and intermittency. Analysis of the Mars Orbiter Laser Altimeter (MOLA) data and computer simulations suggest that there are two potential contributors to the small-scale scaling: (i) scale-invariant surface formation; and (ii) effects of discrete morphological forms such as craters. The crater effect also provides an explanation for the large-scale intermittency revealed using the normalized structure functions within the saturation range, which cannot be explained by the ‘scale-invariant’ concept. Overall, the obtained results suggest that the “crater” contribution to the structure function behavior often dominates over the effect of the scale-invariant surface formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号