首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1021篇
  免费   11篇
  国内免费   14篇
测绘学   22篇
大气科学   5篇
地球物理   53篇
地质学   54篇
海洋学   1篇
天文学   887篇
综合类   4篇
自然地理   20篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   13篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   5篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   12篇
  2012年   11篇
  2011年   128篇
  2010年   172篇
  2009年   113篇
  2008年   128篇
  2007年   74篇
  2006年   102篇
  2005年   85篇
  2004年   75篇
  2003年   39篇
  2002年   27篇
  2001年   4篇
  2000年   4篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1985年   1篇
排序方式: 共有1046条查询结果,搜索用时 140 毫秒
61.
Attila Elteto  Owen B. Toon 《Icarus》2010,210(2):566-588
We present a new parameter retrieval algorithm for Mars Global Surveyor Thermal Emission Spectrometer data. The algorithm uses Newtonian first-order sensitivity functions of the infrared spectrum in response to variations in physical parameters to fit a model spectrum to the data at 499, 1099, and 1301 cm−1. The algorithm iteratively fits the model spectrum to data to simultaneously retrieve dust extinction optical depth, effective radius, and surface temperature. There are several sources of uncertainty in the results. The assumed dust vertical distribution can introduce errors in retrieved optical depth of a few tens of percent. The assumed dust optical constants can introduce errors in both optical depth and effective radius, although the systematic nature of these errors will not affect retrieval of trends in these parameters. The algorithm does not include the spectral signature of water ice, and hence data needs to be filtered against this parameter before the algorithm is applied. The algorithm also needs sufficient dust spectral signature, and hence surface-to-atmosphere temperature contrast, to successfully retrieve the parameters. After the application of data filters the algorithm is both relatively accurate and very fast, successfully retrieving parameters, as well as meaningful parameter variability and trends from tens of thousands of individual spectra on a global scale (Elteto, A., Toon, O.B. [2010]. Icarus, this issue). Our results for optical depth compare well with TES archive values when corrected by the single scattering albedo. Our results are on average 1–4 K higher in surface temperatures from the TES archive values, with greater differences at higher optical depths. Our retrieval of dust effective radii compare well with the retrievals of Wolff and Clancy (Wolff, M.J., Clancy, R.T. [2003]. J. Geophys. Res. 108 (E9), 5097) for the corresponding data selections from the same orbits.  相似文献   
62.
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work.  相似文献   
63.
A lava channel identified on the wall of an Elysium Planitia impact crater is investigated to identify the dominant erosion mechanism, mechanical vs. thermal, acting during channel formation. Observations of channel morphology are used to supplement analytical models of lava channel formation in order to calculate the duration of channel formation, the velocity of the lava flowing through the channel, and the erosion rate in each erosion regime considered. Results demonstrate that the channel observed in the Elysium Planitia impact crater formed primarily due to mechanical erosion. In a more general sense, results of this study suggest that lava channels can form primarily due to thermal erosion in the presence of more gradual slopes and more consolidated substrates whereas lava channels can form primarily due to mechanical erosion in the presence of more energetic flows on steeper slopes and more poorly consolidated substrates. Therefore, both erosion regimes must be considered when analyzing origins of eroded lava channels that cut through strata of different strengths.  相似文献   
64.
Daisuke Kobayashi 《Icarus》2010,210(1):37-42
The crustal magnetic anomalies on Mars may represent hot spot tracks resulting from lithospheric drift on ancient Mars. As evidence, an analysis of lineation patterns derived from the ΔBr magnetic map is presented. The ΔBr map, largely free of external magnetic field effects, allows excellent detail of the magnetic anomaly pattern, particularly in areas of Mars where the field is relatively weak. Using cluster analysis, we show that the elongated anomalies in the martian magnetic field form concentric small circles (parallels of latitude) about two distinct north pole locations. If these pole locations represent ancient spin axes, then tidal force on the early lithosphere by former satellites in retrograde orbits may have pulled the lithosphere in an east-west direction over hot mantle plumes. With an active martian core dynamo, this may have resulted in the observed magnetic anomaly pattern of concentric small circles. As further evidence, we observe that, of the 15 martian giant impact basins that were possibly formed while the core dynamo was active, seven lie along the equators of our two proposed paleopoles. We also find that four other re-magnetized giant impact basins lie along a great circle about the mean magnetic paleopole of Mars. These 11 impact basins, likely the result of fallen retrograde satellite fragments, indicate that Mars once had moons large enough to cause tidal drag on the early martian lithosphere. The results of this study suggest that the magnetic signatures of this tidal interaction have been preserved to the present day.  相似文献   
65.
The presence of sulfate salts and limited subsurface water (ice) on Mars suggests that any liquid water on Mars today will occur as (magnesium) sulfate-rich brines in regions containing sources of magnesium and sulfur. The Basque Lakes of British Columbia, Canada, represent a hypersaline terrestrial analogue site, which possesses chemical and physical properties similar to those observed on Mars. The Basque Lakes also contain diverse halophilic organisms representing all three Kingdoms of life, growing in surface and near-subsurface environments. Of interest from an astrobiological perspective, crushed magnesium sulfate samples that were analyzed using a modified Lowry protein assay contained biomass in every crystal inspected, with biomass values from 0.078 to 4.21 mgbiomass/gsalt; average=0.74±0.7 mgbiomass/gsalt. Bacteria and Archaea cells were easily observed even in low-biomass samples using light microscopy, and bacteria trapped within magnesium sulfate crystals were observed using confocal microscopy. Regions within the salt also contained bacterial pigments, e.g., carotenoids, which were separate from the cells, indicating that cell lysis might have occurred during entrapment within the salt matrix. These biosignatures, cells, and any ‘soluble’ organic constituents were primarily found trapped within fluid inclusions or fluid-filled void spaces between intergrown crystals. Diffuse reflectance infrared Fourier transform spectroscopy (reflectance IR) analysis of enrichment cultures, containing cyanobacteria, Archaea, or dissimilatory sulfate-reducing bacteria, highlighted molecular biosignature features between 550-1650 and 2400-3000 cm−1. Spectra from natural salts demonstrated that we can detect biomass within salt crystals using the most sensitive biosignatures, which are the 1530-1570 cm−1, C-N, N-H, -COOH absorptions and the 1030-1050 cm−1 C-OH, C-N, PO43− bond features. The lowest detection limit for a biosignature absorption feature using reflectance IR was with a natural sample that possessed 0.78 mgbiomass/gsalt. In a model cell, i.e., a 0.5 by 1 μm bacillus, this biomass value corresponds to approximately 7.8×108 cells/gsalt. Based on its ability to detect biomass entrapped within natural sulfate salts, reflectance IR may make an effective remote-sensing tool for finding enrichments of organic carbon within outcrops and surficial sedimentary deposits on Mars.  相似文献   
66.
A key question in understanding life on Mars under dry(ing) conditions is how arid soils respond to small levels of liquid water. We have conducted a series of simulated rain experiments in the hyperarid core region of the Atacama Desert. Rain amounts from 0.24 to 3.55 mm were applied in the early evening to the soil. We conclude that rain events of less than 1 mm do not saturate the surface, and the soil humidity at the surface remains below 100%. Rain events of 2 mm or more generate free water in the pore space of the soil surface, which may be necessary to support biological activity in the soil. The crust on the surface of the soil is a strong barrier to the diffusion of subsurface moisture and subsequent evaporation. Our results show that once the relative humidity in hyperarid soils begins to fall below 100% the rate of decrease is quite rapid. Thus, the precise value assumed for the limits of life or water activity, do not appreciably change the time of water availability resulting from small desert rains. The Atacama Desert results may be applied to models of (H2O) wetting in the upper soils of Mars due to light rains, melting snow and heavy precipitating fog.  相似文献   
67.
Lava tubes and basaltic caves are common features in volcanic terrains on Earth. Lava tubes and cave-like features have also been identified on Mars based on orbital imagery and remote-sensing data. Caves are unique environments where both secondary mineral precipitation and microbial growth are enhanced by stable physico-chemical conditions. Thus, they represent excellent locations where traces of microbial life, or biosignatures, are formed and preserved in minerals. By analogy with terrestrial caves, caves on Mars may contain a record of secondary mineralization that would inform us on past aqueous activity. They may also represent the best locations to search for biosignatures. The study of caves on Earth can be used to test hypotheses and better understand biogeochemical processes, and the signatures that these processes leave in mineral deposits. Caves may also serve as test beds for the development of exploration strategies and novel technologies for future missions to Mars. Here we review recent evidence for the presence of caves or lava tubes on Mars, as well as the geomicrobiology of lava tubes and basaltic caves on Earth. We also propose future lines of investigation, including exploration strategies and relevant technologies.  相似文献   
68.
The future exploration of Mars is likely to utilize resources that can be extracted in situ. An overview of the geology of Mars has been presented and several mechanisms that could result in the formation of ore deposits have been identified. These include deposits caused by hydrothermal fluids resulting from volcanic activity, large igneous province formation and impact craters. Surface enrichment of mineral sand deposits is also discussed. Where appropriate, terrestrial analogues of these mechanisms have been discussed and supporting evidence from observations of Mars undertaken to date presented. Types of deposits that are unlikely to be found on Mars are also listed.  相似文献   
69.
Australia has numerous landforms and features, some unique, that provide a useful reference for interpreting the results of spacecraft orbiting Mars and exploring the martian surface. Examples of desert landforms, impact structures, relief inversion, long-term landscape evolution and hydrothermal systems that are relevant to Mars are outlined and the relevant literature reviewed. The Mars analogue value of Australia's acid lakes, hypersaline embayments and mound spring complexes is highlighted along with the Pilbara region, where the oldest convincing evidence of life guides exploration for early life on Mars. The distinctive characteristics of the Arkaroola Mars Analogue Region are also assessed and opportunities for future work in Australia are outlined.  相似文献   
70.
The conditions of formation and the form of yardangs in ignimbrites in the Central Andes of Chile, Bolivia, and Argentina may be the most convincing terrestrial analog to the processes and lithology that produce the extensive yardangs of the Medusae Fossae Formation (MFF) of Mars. Through remote and field study of yardang morphologies in the Central Andes we highlight the role that variable material properties of the host lithology plays in their final form. Here, ignimbrites typically show two main facies: an indurated and jointed facies, and a weakly to poorly indurated, ash- and pumice-rich facies. Both facies are vertically arranged in large (erupted volume >100's of km3) ignimbrites resulting in a resistant capping layer, while smaller (10's of km3) ignimbrites are made predominantly of the weakly indurated facies. The two facies have quite different mechanical properties; the indurated facies behaves as strong rock, fails by block collapse and supports steep/vertical cliffs, while the non-indurated facies is more easily eroded and forms gentle slopes and manifests as more subdued erosional forms. In response to aeolian action, the presence of an upper indurated facies results in large, elongate, high aspect ratio (1:20-1:40) megayardangs that form tall (100 m), thin ridges with steep to vertical walls. These are built on a broad apron of the weakly indurated facies with abundant fallen blocks from the upper indurated facies. These terrestrial megayardangs appear to be analogous to megayardangs with associated block fields seen on Mars. Smaller-volume, weakly indurated ignimbrites are sculpted into smaller, stubbier forms with aspect ratios of 1:5-1:10 and heights rarely exceeding 10 m. Excavation of a windward basal moat suggests an erosional progression like that seen in incipient yardangs on Mars. Excavation rates of 0.007-0.003 cm/year are calculated for the weakly indurated ignimbrites. While a persistent strong unidirectional wind is the dominant parameter controlling yardang formation and orientation, a role for flow separation and vorticity is also suggested by our observations at both yardang types. While the indurated facies is commonly pervasively jointed, jointing is of secondary importance in controlling yardang orientation. Serrated margins, a common feature on Mars, result from oblique intersections of jointing with yardang flanks or scarps of ignimbrite. The processes of yardang formation we describe from ignimbrites from the Central Andes are not necessarily specific to ignimbrites, but do connote that degree and distribution of induration is a major control in yardang formation and this has implications for the lithology of the MFF on Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号