首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1021篇
  免费   121篇
  国内免费   187篇
测绘学   48篇
大气科学   394篇
地球物理   207篇
地质学   103篇
海洋学   65篇
天文学   424篇
综合类   28篇
自然地理   60篇
  2024年   5篇
  2023年   4篇
  2022年   15篇
  2021年   16篇
  2020年   10篇
  2019年   16篇
  2018年   19篇
  2017年   13篇
  2016年   11篇
  2015年   17篇
  2014年   24篇
  2013年   43篇
  2012年   25篇
  2011年   28篇
  2010年   39篇
  2009年   80篇
  2008年   95篇
  2007年   107篇
  2006年   112篇
  2005年   82篇
  2004年   69篇
  2003年   62篇
  2002年   59篇
  2001年   45篇
  2000年   59篇
  1999年   41篇
  1998年   48篇
  1997年   31篇
  1996年   29篇
  1995年   22篇
  1994年   14篇
  1993年   16篇
  1992年   15篇
  1991年   8篇
  1990年   7篇
  1989年   12篇
  1988年   8篇
  1987年   1篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1329条查询结果,搜索用时 15 毫秒
81.
In this paper, the CO2 concentrations profile from 1.5 m depth in soil to 32 m height in atmosphere were measured from July 2000 to July 2001 in an alpine grassland ecosystem located in the permafrost area on the Tibetan Plateau, which revealed that CO2 concentrations varied greatly during this study period. Mean concentrations during the whole experiment in the atmosphere were absolutely lower than the CO2 concentrations in soil, which resulted in CO2 emissions from the alpine steppe soil to the atmosphere. The highest CO2 concentration was found at a depth of 1.5 m in soil while the lowest CO2 concentration occurred in the atmosphere. Mean CO2 concentrations in soil generally increased with depth. This was the compositive influence of the increasing soil moistures and decreasing soil pH, which induced the increasing biological activities with depth. Temporally, the CO2 concentrations at different layers in air remained a more steady state because of the atmospheric turbulent milking. During the seasonal variations, CO2 concentrations at surface soil interface showed symmetrical patterns, with the lowest accumulation of CO2 occurring in the late winter and the highest CO2 concentration in the growine seasons.  相似文献   
82.
书法景观的文化地理浅释   总被引:8,自引:2,他引:6  
书法地理学作为一门新兴的文化地理学的分支,它的基本理论研究对象之一便是书法景观。从文化地理学的角度出发,探讨了书法景观的概念,书法景观的分类。指出其构成除了自然因素以外,还应包括人文景观中的可视性因素、可悟性因素和氛围。书法景观是自然景观人文景观的统一体。  相似文献   
83.
We present absolute abundances and latitudinal variations of ozone and water in the atmosphere of Mars during its late northern spring (Ls=67.3°) shortly before aphelion. Long-slit maps of the a1Δg state of molecular oxygen (O2) and HDO, an isotopic form of water, were acquired on UT January 21.6 1997 using a high-resolution infrared spectrometer (CSHELL) at the NASA Infrared Telescope Facility. O2(a1Δg) is produced by ozone photolysis, and the ensuing dayglow emission at 1.27 μm is used as a tracer for ozone. Retrieved vertical column densities for ozone above ∼20 km ranged between 1.5 and 2.8 μm-atm at mid- to low latitudes (30°S-60°N) and decreased outside that region. A significant decrease in ozone density is seen near 30°N (close to the subsolar latitude of 23.5°N). The rotational temperatures retrieved from O2(a-X) emissions show a mean of 172±2.5 K, confirming that the sensed ozone lies in the middle atmosphere (∼24 km). The ν1 fundamental band of HDO near 3.67 μm was used as a proxy for H2O. The retrieved vertical column abundance of water varies from 3 precipitable microns (pr-μm) at ∼30°S to 24 pr-μm at ∼60°N. We compare these results with current photochemical models and with measurements obtained by other methods.  相似文献   
84.
We study lightning on Jupiter and the clouds illuminated by the lightning using images taken by the Galileo orbiter. The Galileo images have a resolution of ∼25 km/pixel and are able to resolve the shape of single lightning spots, which have half widths (radii) at half the maximum intensity in the range 45-80 km. We compare the shape and width of lightning flashes in the images with simulated flashes produced by our 3D Monte Carlo light-scattering model.The model calculates Monte Carlo scattering of photons in a 3D opacity distribution. During each scattering event, light is partially absorbed. The new direction of the photon after scattering is chosen according to a Henyey-Greenstein phase function. An image from each direction is produced by accumulating photons emerging from the cloud in a small range (bins) of emission angles. The light source is modeled either as a point or a vertical line.A plane-parallel cloud layer does not always fit the data. In some cases the cloud over the light source appears to resemble cumulus clouds on Earth. Lightning is estimated to occur at least as deep as the bottom of the expected water cloud. For the six flashes studied, we find that the clouds above the lightning are optically thick (τ>5). Jovian flashes are more regular and circular than the largest terrestrial flashes observed from space. On Jupiter there is nothing equivalent to the 30-40-km horizontal flashes that are seen on Earth.  相似文献   
85.
Greenhouse warming due to carbon dioxide atmospheres may be responsible for maintaining the early Earth's surface temperature above freezing and may even have allowed for liquid water on early Mars. However, the high levels of CO2 required for such warming should have also resulted in the formation of CO2 clouds. These clouds, depending on their particle size, could lead to either warming or cooling. The particle size in turn is determined by the nucleation and growth conditions. Here we present laboratory studies of the nucleation and growth of carbon dioxide on water ice under martian atmospheric conditions. We find that a critical saturation, S=1.34, is required for nucleation, corresponding to a contact parameter between solid water and solid carbon dioxide of m=0.95. We also find that after nucleation occurs, growth of CO2 is very rapid, and we report the growth rates at a number of supersaturations. Because growth would be expected to continue until the CO2 pressure is lowered to its vapor pressure, we expect particles larger than those being currently suggested for the present and past martian atmospheres. Using this information in a microphysical model described in a companion paper, we find that CO2 clouds are best described as “snow,” having a relatively small number of large particles.  相似文献   
86.
In order to study the stability of martian climate, we constructed a two-dimensional (horizontal-vertical) energy balance model. The long-term CO2 mass exchange process between the atmosphere and CO2 ice caps is investigated with particular attention to the effect of planetary ice distribution on the climate stability. Our model calculation suggests that high atmospheric pressure presumed for past Mars would be unstabilized if H2O ice widely prevailed. As a result, a cold climate state might have been achieved by the condensation of atmospheric CO2 onto ice caps. On the other hand, the low atmospheric pressure, which is buffered by the CO2 ice cap and likely close to the present pressure, would be unstabilized if the CO2 ice albedo decreased. This may have led the climate into a warm state with high atmospheric pressure owing to complete evaporation of CO2 ice cap. Through the albedo feedback mechanisms of H2O and CO2 ices in the atmosphere-ice cap system, Mars may have experienced warm and cold climates episodically in its history.  相似文献   
87.
88.
A multi-wavelength radio frequency observation of Venus was performed on April 5, 1996, with the Very Large Array to investigate potential variations in the vertical and horizontal distribution of temperature and the sulfur compounds sulfur dioxide (SO2) and sulfuric acid vapor (H2SO4(g)) in the atmosphere of the planet. Brightness temperature maps were produced which feature significantly darkened polar regions compared to the brighter low-latitude regions at both observed frequencies. This is the first time such polar features have been seen unambiguously in radio wavelength observations of Venus. The limb-darkening displayed in the maps helps to constrain the vertical profile of H2SO4(g), temperature, and to some degree SO2. The maps were interpreted by applying a retrieval algorithm to produce vertical profiles of temperature and abundance of H2SO4(g) given an assumed sub-cloud abundance of SO2. The results indicate a substantially higher abundance of H2SO4(g) at high latitudes (above 45°) than in the low-latitude regions. The retrieved temperature profiles are up to 25 K warmer than the profile obtained by the Pioneer Venus sounder probe at altitudes below 40 km (depending on location and assumed SO2 abundance). For 150 ppm of SO2, it is more consistent with the temperature profile obtained by Mariner 5, extrapolated to the surface via a dry adiabat. The profiles obtained for H2SO4(g) at high latitudes are consistent with those derived from the Magellan radio occultation experiments, peaking at around 8 ppm at an altitude of 46 km and decaying rapidly away from that altitude. At low latitudes, no significant H2SO4(g) is observed, regardless of the assumed SO2 content. This is well below that measured by Mariner 10 (Lipa and Tyler 1979, Icarus39, 192-208), which peaked at ∼14 ppm near 47 km. Our results favor ≤100 ppm of SO2 at low latitudes and ≤50 ppm in polar regions. The low-latitude value is statistically consistent with the results of Bézard et al. (1983, Geophs. Res. Lett.20, 1587-1590), who found that a sub-cloud SO2 abundance of 130±40 ppm best matched their observations in the near-IR. The retrieved temperature profile and higher abundance of H2SO4(g) in polar regions are consistent with a strong equatorial-to-polar, cloud-level flow due to a Hadley cell in the atmosphere of Venus.  相似文献   
89.
The atmosphere and the ocean are subject to many dynamical instabilities, which limit the time during which their behaviour can be deterministically forecasted. At longer timescales, the atmosphere can be predicted at best using statistical methods, as a response to external forcing linked to sea- and land-surface anomalies. Climate being defined as the mean of atmospheric states, it appears that it can be predicted up to a few months in advance, which is the characteristic time of the so-called slow components of the climate system. Forecasting can sometimes be extended to longer time ranges, especially when the coupled ocean–atmosphere system exhibits internal variability modes, with characteristic times of a few years. Seasonal climate forecasting is most often based upon Monte-Carlo simulations, where the various realisations correspond to slightly different initial conditions. The present sate-of-the-art in Europe (ECMWF) and/or in the USA (IRI) allows to forecast such major phenomena, as El Niño, up to six months in advance. Finally, some parameters may exhibit predictability at still longer time-ranges (inter-annual to decadal), but only for certain regions. The example of electricity production is used to underline the potentially large economical benefit of seasonal climate forecasting. To cite this article: J.-C. André et al., C. R. Geoscience 334 (2002) 1115–1127.

Résumé

L'atmosphère et l'océan sont le siège d'instabilités dynamiques, qui limitent la durée pendant laquelle il est possible d'en prévoir l'évolution de façon déterministe. Au-delà, l'atmosphère n'est plus prévisible, au mieux, que de façon statistique, en fonction du forçage externe qu'exerce(nt) sur elle l'océan et/ou la surface des continents. Le climat (au sens d'une moyenne des états atmosphériques) se révèle ainsi prévisible jusqu'à des échéances temporelles de quelques mois, échelle de temps caractéristique des composantes dites « lentes » du système climatique. La prévision peut s'étendre à des échéances parfois plus longues, dans le cas où le système couplé océan–atmosphère posséderait des modes de variabilité temporelle de périodes caractéristiques de quelques années. La prévision climatique saisonnière est très souvent construite à partir de simulations de type Monte-Carlo, avec des ensembles de réalisations utilisant des conditions initiales légèrement différentes. Dans l'état actuel de ces prévisions, qu'elles soient réalisées en Europe (CEPMMT) ou aux États-Unis (IRI), il est possible de prévoir environ six mois à l'avance un certain nombre de phénomènes climatiques, en particulier ceux liés aux épisodes dits « El Niño », pour lesquels l'amplitude des variations est suffisamment importante. Il existe, par ailleurs, une prévisibilité à encore plus longue échéance (inter-annuelle à décennale), mais seulement pour certains paramètres et certaines régions. L'exemple de la production d'électricité montre l'importance économique potentielle très grande de la prévision climatique saisonnière. Pour citer cet article : J.-C. André et al., C. R. Geoscience 334 (2002) 1115–1127.  相似文献   
90.
The capabilities of the continuous wavelet transform (CWT) and the multiresolution analysis (MRA) are presented in this work to measure vertical gravity wave characteristics. Wave properties are extracted from the first data set of Rayleigh lidar obtained between heights of 30 km and 60 km over La Reunion Island (21°S, 55°E) during the Austral winter in 1994 under subtropical conditions. The altitude-wavelength representations deduced from these methods provide information on the time and spatial evolution of the wave parameters of the observed dominant modes in vertical profiles such as the vertical wavelengths, the vertical phase speeds, the amplitudes of temperature perturbations and the distribution of wave energy. The spectra derived from measurements show the presence of localized quasi-monochromatic structures with vertical wavelengths <10 km. Three methods based on the wavelet techniques show evidence of a downward phase progression. A first climatology of the dominant modes observed during the Austral winter period reveals a dominant night activity of 2 or 3 quasi-monochromatic structures with vertical wavelengths between 1/2 km from the stratopause, 3/4 km and 6/10 km observed between heights of 30 km and 60 km. In addition, it reveals a dominant activity of modes with a vertical phase speed of –0.3 m/s and observed periods peaking at 3/4 h and 9 h. The characteristics of averaged vertical wavelengths appear to be similar to those observed during winter in the southern equatorial region and in the Northern Hemisphere at mid-latitudes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号