首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   104篇
  国内免费   140篇
测绘学   24篇
大气科学   12篇
地球物理   146篇
地质学   773篇
海洋学   92篇
天文学   3篇
综合类   25篇
自然地理   143篇
  2024年   2篇
  2023年   5篇
  2022年   20篇
  2021年   26篇
  2020年   32篇
  2019年   46篇
  2018年   22篇
  2017年   49篇
  2016年   47篇
  2015年   33篇
  2014年   78篇
  2013年   81篇
  2012年   79篇
  2011年   65篇
  2010年   48篇
  2009年   64篇
  2008年   71篇
  2007年   46篇
  2006年   61篇
  2005年   39篇
  2004年   37篇
  2003年   33篇
  2002年   32篇
  2001年   22篇
  2000年   27篇
  1999年   12篇
  1998年   16篇
  1997年   12篇
  1996年   16篇
  1995年   25篇
  1994年   20篇
  1993年   17篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
排序方式: 共有1218条查询结果,搜索用时 31 毫秒
81.
中国与蒙古之地质   总被引:26,自引:0,他引:26  
东昆仑中部缝合带清水泉一带发育石榴斜长紫苏麻粒岩、紫苏辉石黑云母石榴子石麻粒岩、石榴二辉斜长麻粒岩和石榴单斜辉石麻粒岩,它们与混合岩化黑云母石榴子石变粒岩、黑云母辉石变粒岩、石墨大理岩、含透辉石透闪石大理岩、透辉石大理岩、黑云斜长角闪岩和片麻岩等高级变质岩系以及纯橄岩、辉橄岩、橄长岩、辉长岩、辉绿岩和玄武岩等共同构成蛇绿混杂岩。麻粒岩相变质作用的温压条件为T=760~880℃,p=830~1200MPa,为高温中高压麻粒岩相变质作用,估算其形成深度为40~45km。麻粒岩相变质作用的SHRIMP锆石U-Pb年龄为(507·7±8·3)Ma。清水泉地区蛇绿岩形成于~520Ma,到~508Ma时俯冲至地下40~45km深处而发生中高压麻粒岩相变质作用,然后发生构造折返而剥露至地表。证实了清水泉高级变质岩和基性—超基性岩片是形成于早—中寒武世的蛇绿混杂岩,标志一个古生代早期的非常重要的板块汇聚边界,这对于进一步研究东昆仑造山带构造演化、乃至中国西部大地构造格局具有非常重要的意义。  相似文献   
82.
第三纪富金斑岩型铜矿床主要发育于板块汇聚边缘与俯冲作用相关的火山-岩浆弧以及陆缘弧中,而大多数较古老的富金斑岩型铜矿床则主要发育于向大陆边缘增生的岛弧环境中.含矿斑岩的岩性变化范围从低钾钙碱性闪长岩、石英闪长岩和英云闪长岩到高钾钙碱性石英二长岩到碱性的二长岩及正长岩,通常侵位于地壳浅部l~2km处,与同期的火山岩密切共生,并常见热液爆破角砾岩.其围岩蚀变从早到晚依次可分为Ca-Na硅酸盐蚀变、K硅酸盐蚀变、中级泥质蚀变、绢云母化、高级泥质蚀变,而浅部的高级泥质蚀变可以与早期K硅酸盐蚀变同期形成.Cu、Au矿化主要发育在K硅酸盐蚀变带中,矿化与A型脉密切相关,贫钼而富铂族元素.控制富金斑岩型铜矿床形成的几个关键过程包括:(1)源区有大量的Cu、Au等成矿元素;(2)能使Cu、Au等成矿物质有效进入岩浆熔体的机制;(3)合成矿元素的岩浆熔体在从地幔上升到地壳高侵位而形成斑岩体的过程中没有Cu、Au等成矿物质损失;(4)在岩浆上升演化过程中,岩浆挥发份能有效的逸出,并且逸出的时间越早,对成矿越有利;(5)Cu、Au等成矿元素能有效进入岩浆挥发份;(6)在成矿斑岩体上部发育有利的相对封闭机制,阻止岩浆挥发份的逃逸;(7)含Cu、Au成矿流体的有效沉淀机制;(8)具有一个地壳上部的岩浆房,能够不断提供成矿物质和驱动热液循环的热能.要形成大型矿床一般需要多期岩浆脉动侵位与多期矿化热液蚀变事件的叠加.现多倾向认为交代的地幔楔可能是其主要物质来源.而有利于富金斑岩型铜矿床形成的岩浆有钾质钙碱性岩浆、埃达克质岩浆、碱性弧岩浆.俯冲板片脱水形成的流体或者熔融产生熔体提供了上覆地幔楔熔融的高氧逸度条件,这种高氧逸度特征是地幔源区Cu、Au成矿元素能否进入岩浆熔体的重要条件之一.最近研究表明流体的冷却可能是Cu、Au沉淀成矿最主要的因素.本文扼要介绍了富金斑岩型铜矿的矿床地质特征、矿床成因等方面的研究进展,分析了存在的主要问题并对其发展趋势作了展望.  相似文献   
83.
莲沱砂岩——南华大冰期前气候转冷的沉积记录   总被引:1,自引:1,他引:1  
冯连君  储雪蕾  张同钢  黄晶   《岩石学报》2006,22(9):2387-2393
湖北宜昌地区出露的莲沱组中上部细屑岩的化学蚀变指数(CLA)介于60~70之间,表明是在寒冷干燥的气候条件下沉积的。比较莲沱组与板溪群中下部沉积岩的主化学成分和 CIA 值表明,板溪群源区遭受过强烈的化学风化,相应的古气候是温暖湿润的,而莲沱组源区化学风化弱,可见两者形成时的古气候环境明显不同。根据 CIA 值推测,地层层序上莲沱组位于板溪群的中上部,莲沱砂岩的 CIA 研究表明南华大冰期前全球气候已经从温暖湿润转变为寒冷干燥,CIA 值继续降低预示着全球性的冰期到表,不久就发生了"雪球地球"事件。  相似文献   
84.
塔里木板块新元古代地层化学蚀变指数研究及其意义   总被引:3,自引:4,他引:3  
本文应用化学蚀变指数(CIA)方法,研究新疆库鲁克塔格地区新元古代地层,并探讨沉积时期的气候环境。贝义西组总体 CIA 值较低,介于51~56之间,具冰期环境特征。照壁山组 CIA 值为60左右,表明气候有所变暖。阿勒通沟组的CIA 值变化范围在48~61之间,顶部突变为69~71,说明阿勒通沟期经历了另一次寒冷事件,并以温暖环境结束。其上的特瑞爱肯组 CIA 值介于49~53之间,说明第三次经历寒冷干燥的气候环境。扎莫克提组,育肯沟组和水泉组的 CIA 均值为65,反映温暖条件下的沉积环境。新元古代末期汉格尔乔克组 CIA 值下降为56,暗示第四次出现寒冷气候环境。以上特征表明新疆库鲁克塔格地区新元古代的气候环境出现四次冷热交替变化。其中尤为重要的是阿勒通沟组中下部应为寒冷气候环境,而顶部突变为温暖气候环境,因此该组反映了一次明确的从冷到暖的气候变化过程,可以作为贝义西冰期和特瑞爱肯冰期之间的另一次独立冰期。本文的研究成果从地球化学角度支持塔里木板块新元古代四次冰期的划分方案。通过与扬子板块新元古代冰期划分方案的对比,认为塔里木板块新元古代四次冰期的前三次均已在华南板块以冰期或寒冷环境沉积形式出现。  相似文献   
85.
腾冲来凤山北麓前缘,潜伏一段阻水构造——地下水位坡降带。从研究13个水文钻井、119口民间井、2个泉水露头地下水位特征入手,采用古水文和现代水文地质研究方法,论证此段阻水构造的存在。  相似文献   
86.
何照波  刘涛  杨宗  余红平 《云南地质》2007,26(2):175-182
萨尔布拉克金矿为北疆地区重要金矿之一,位于两个一级构造单元结合部位,矿床受北西向断裂破碎带控制,走向延伸长,规模大,从地表向下氧化矿、混合矿、硫化矿分带明显。明显受构造、地层及岩性控制,属构造一热液蚀变岩型微粒金矿。  相似文献   
87.
采用井-震联合地层恢复法,对辽东湾辽东带中南部的古近纪进行了古地貌恢复。在此基础上拓宽了坡折带研究,将古地貌(包括古坡折带、古沟谷、古凸起等)纳入古物源供给系统的框架内探讨其对沉积体系的控制作用。分析表明:在构建完整物源供给系统的前提下,古地貌诸单元及其组合样式对沉积体系有着明显的控制作用。主要表现为:不同级次的物源体系导致沉积体类型和规模存在差异;物源区沟谷的分布及其赋存时期制约着砂体的主要分布位置、时期及规模;坡折带样式决定砂体的类型、规模及分布;古地貌组合样式控制储集体的成因、富集位置和规模大小。因此,古地貌分析对储层的预测和识别具有明显的指导作用。勘探实践证明,将其与常规储层预测方法联用,能够很大程度地提高储层预测的精度。  相似文献   
88.
The study area is located on the middle sector of the Malatya-Ovacık Fault Zone (MOFZ) in the eastern Anatolia. Four basaltic flows from bottom to top, which are tholeiitic in character and intercalated with Pliocene sedimentary rocks, were erupted along this fault zone. Chemical compositions of these flows reveal some differences between the first flow and others in terms of high-field strength elements (HFSEs) (e.g. Ti, Zr, Nb). Limited variations in compositions within the first flow and upper flows suggest a limited fractionation range. Trace-element patterns exhibit that all the flows have similar and OIB-like patterns without positive peak at Pb and a trough at Nb—Ta, indicating minimal or no crustal contribution. Rare-earth element (REE) patterns indicate that the first flow has flat patterns with negative Eu anomaly, whereas the upper flows have variable enrichments in LREE and depletions in HREE. La/SmN, Dy/YbN and Zr/Y ratios exhibit that the degree of partial melting decreases from the first flow to upper flows. Higher values of La/YbN ratio for the upper flows and depletions at Y and Yb on the trace-element patterns suggest the presence of garnet as a residual phase, which imply that the depth of partial melting took place solely in the garnet-stability field. OIB-like trace-element patterns and trace-element ratios (e.g. La/Nb, Ce/Y and Zr/Nb) emphasize that the melts forming the Arguvan basalt were originated from the asthenospheric mantle rather than the lithospheric mantle.  相似文献   
89.
The mid-Holocene eruptive products of Nevado de Longavívolcano (36·2°S, Chile) are the only reported occurrenceof adakitic volcanic rocks in the Quaternary Andean SouthernVolcanic Zone (33–46°S). Dacites of this volcano arechemically distinct from other evolved magmas of the regionin that they have high La/Yb (15–20) and Sr/Y (60–90)ratios and systematically lower incompatible element contents.An origin by partial melting of high-pressure crustal sourcesseems unlikely from isotopic and trace element considerations.Mafic enclaves quenched into one of the dacites, on the otherhand, constitute plausible parental magmas. Dacites and maficenclaves share several characteristics such as mineral chemistry,whole-rock isotope and trace element ratios, highly oxidizingconditions (NNO + 1·5 to >NNO + 2, where NNO is thenickel–nickel oxide buffer), and elevated boron contents.A two-stage mass-balance crystal fractionation model that matchesboth major and trace elements is proposed to explain magmaticevolution from the least evolved mafic enclave to the dacites.Amphibole is the main ferromagnesian phase in both stages ofthis model, in agreement with the mineralogy of the magmas.We also describe cumulate-textured xenoliths that correspondvery closely to the solid assemblages predicted by the model.We conclude that Nevado de Longaví adakitic dacites arethe products of polybaric fractional crystallization from exceptionallywater-rich parent magmas. These basaltic magmas are inferredto be related to an exceptionally high, but transient inputof slab-derived fluids released from serpentinite bodies hostedin the oceanic Mocha Fracture Zone, which projects beneath Nevadode Longaví. Fractional crystallization that is modallydominated by amphibole, with very minor garnet extraction, isa mechanism for generating adakitic magmas in cold subductionzones where a high flux of slab-derived fluids is present. KEY WORDS: adakite; amphibole; Andes; differentiation; Southern Volcanic Zone  相似文献   
90.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号