首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   50篇
  国内免费   49篇
测绘学   61篇
大气科学   124篇
地球物理   94篇
地质学   13篇
海洋学   10篇
天文学   1篇
综合类   10篇
自然地理   42篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   12篇
  2020年   10篇
  2019年   16篇
  2018年   12篇
  2017年   14篇
  2016年   13篇
  2015年   11篇
  2014年   17篇
  2013年   20篇
  2012年   4篇
  2011年   12篇
  2010年   11篇
  2009年   23篇
  2008年   40篇
  2007年   18篇
  2006年   20篇
  2005年   18篇
  2004年   16篇
  2003年   12篇
  2002年   5篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有355条查询结果,搜索用时 296 毫秒
101.
The Penman–Monteith equation is extended to describe evaporation of intercepted rain, transpiration and the interaction between these processes in a single explicit function. This single-layer model simulates the effects of heat exchange, stomatal blocking and changed humidity deficit close to the canopy as a function of canopywater storage. Evaporation depends on the distribution of water over the canopy and the energy exchange between wet and dry parts. Transpiration depends on the dry canopy surface resistance that is described with a Jarvis-type response. The explicit functions obtained for water vapour fluxes facilitate a straightforward identificationof the various processes. Canopy water storage amounts and xylem sapflow were measured simultaneously during drying episodes after rainfall in a dense, partially wet, Douglas-fir forest. Estimates of evaporation and transpiration rates are derived from these observations. The analysis shows that evaporation induced transpirationreduction is mainly caused by energy consumption. Changes in water vapour deficit have a minor effect due to a compensating stomatal reaction. The remaining difference between observed and modelled transpiration reduction can be attributed to partial blocking of stomata by the water layer.  相似文献   
102.
103.
The cause of a night-time land-surface model cold bias over forest canopies at threedifferent sites is studied in connection with various formulations of turbulent transferand the phenomenon of decoupling between the surface and the boundary layer. Themodel is the Canadian Land Surface Scheme (CLASS), a leading internationally knownmodel that has been tested over a variety of instrumented sites. The bias was first attributed to a deficient turbulent transfer and a few formulations were compared. One formulation is the classical log-linear profile with a sharp cut-off of the fluxes at a critical Richardsonnumber around 0.2, while in the other ones the flux decreases less rapidly with increasingstatic stability. While the surface-layer formulations have an impact on the modelled canopy temperature, other causes were found for the negative bias. The CLASS model neglected the heat capacity of the air trapped inside the canopy and its inclusion multiplied theeffective heat capacity of the canopy, by a factor ranging from 2.3 to 3.4 for the canopies studied, and reduced the error. A correction was also made to the air specific humidity at canopy level and the topsoil thermal conductivity was changed from that of organic matter to that of mineral soil. With these modifications, and using the incoming longwave radiative flux instead of the net longwave flux, the bias almost completely disappeared. Using ascheme with more heat transfer at large static stability, obtained by assuming that thefluxes decrease in magnitude with height in the surface layer, reduced the original biaswhile using the log-linear formulation amplified the cold bias. The impact of the turbulent transfer formulations is much reduced when they are applied to model runs in which the other above modifications have been made.The phenomenon of decoupling is presented and its understanding is complementedwith the new notions of `hard' versus `soft' decoupling and complete versus incompletedecoupling, depending on the impact decoupling has on the model and on the effectiveness of the model in achieving the decoupling. The geostrophic wind speed is a determiningfactor in separating cases of hard decoupling (rare) from the soft cases (frequent) while the completeness of the decoupling primarily depends on the form of the turbulent transfer curve as a function of static stability.  相似文献   
104.
 杉木林和马尾松是分布于漳平市的两种易燃的可燃物类型。其可燃物负荷量的多少决定着林火行为。在利用ASTER计算杉木林小班平均植被覆盖度的基础上估算其郁闭度,通过与地面调查结果比较分析,校正已发生明显变化的小班郁闭度。根据已有估测方程,结合小班数据中的年龄、胸径和树高等因子对杉木地表可燃物负荷量进行了估测,据此对各杉木小班的燃烧性、燃烧强度及火险等级等因素进行初步评价。最后对漳平市另一易燃的可燃物马尾松类型开展地表可燃物负荷量估测及分析。  相似文献   
105.
祁连山青海云杉林截留对降水的分配效应   总被引:8,自引:0,他引:8  
为了评估青海云杉林的水源涵养服务功能,选择祁连山西水林区排露沟流域青海云杉林,定位监测了在2006年中共83次降水事件的截留分配效应,观测期降水总量为394.2 mm,林冠截留、茎流和穿透水量分别是139.1、1.96和253.1 mm,林冠截留率、茎流率、穿透率分别为35.28%、0.50%和64.22%,当林外降水量>0.8 mm时才观测到林内穿透雨,而大于13.60 mm时,才观测到树干茎流。林冠对降水的截留分配与降水量、降水形态以及林分特征密切相关。冠层截留量、茎流量和穿透量与降水量均呈正相关,冠层截留率与降水量呈负相关,而茎流率和穿透率呈正相关;林冠对降雪的截留强于降雨,而降雨的穿透量强于降雪,同一降水事件下树干茎流量随着胸径的增大而增加。青海云杉林冠的几何形态结构(枝叶的分布与排列)不利于形成树干茎流。  相似文献   
106.
根据含淹没植物河流水流紊动强度与流速和流速分布的关系,建立紊动强度经验公式,并数学推导证明了紊动强度垂向分布最大值的存在。根据实验数据,该紊动强度最大值的大小及出现位置受植物和水流条件的影响:植物的存在增加水流阻力,植物排列密度改变紊动强度最大值的大小;植物叶片的摆动形成水流紊动的主要干扰源,植物/水深相对高度控制紊动强度最大值的出现位置;断面平均流速的变化改变水流的稳定性和植物冠层的高度,对紊动强度最大值的大小和出现位置均有一定影响。  相似文献   
107.
Shuguang Liu 《水文研究》2001,15(12):2341-2360
Simple but effective models are needed for the prediction of rainfall interception under a full range of environmental and management conditions. The Liu model was validated using data published in the literature and was compared with two leading models in the literature: the Rutter and the Gash models. The Liu model was tested against the Rutter model on a single‐storm basis with interception measurements observed from an old‐growth Douglas fir (Pseudotsuga menziesii) forest in Oregon, USA. Simulated results by the Liu model were close to the measurements and comparable to those predicted by the Rutter model. The Liu model was further tested against the Gash model on a multistorm basis. The Gash and Liu models successfully predicted long‐term interception losses from a broad range of 20 forests around the world. Results also indicated that both the Gash and the Liu models could be used to predict rainfall interception using daily rainfall data, although it was assumed in both models that there is only one storm per rain day. The sensitivity of the Liu model to stand storage capacity, canopy gap fraction and evaporation rate from wet canopy surface during rainfall was investigated. Results indicate that the Liu model has the simplest form, least data requirements and comparable accuracy for predicting rainfall interception as compared with the Rutter and the Gash models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
108.
The mean flow within inhomogeneous urban areas is investigated using an urban canopy model. The urban canopy model provides a conceptual and computational tool for representing urban areas in a way suitable for parameterisation within numerical weather prediction and urban air quality models. Average aerodynamic properties of groups of buildings on a neighbourhood scale can be obtained in terms of the geometry and layout of the buildings. These canopy parameters then determine the spatially averaged mean wind speeds within the canopy as a whole. Using morphological data for real cities, computations are performed for representative sections of cities. Simulations are performed to study transitions between different urban neighbourhoods, such as residential areas and city centres. Such transitions are accompanied by changes in mean building density and building height. These are considered first in isolation, then in combination, and the generic effects of each type of change are identified. The simulation of winds through a selection of downtown Los Angeles is considered as an example. An increase in canopy density is usually associated with a decrease in the mean wind speed. The largest difference between mean winds in canopies of different densities occurs near ground level. Winds generally decrease upon encountering a taller canopy of the same density, but this effect may be reversed very near the ground, with possible speed-ups if the canopy is especially tall. In the vicinity of a transition there is an overshoot in the mean wind speed in the bottom part of the canopy. Mechanisms for these effects are discussed.  相似文献   
109.
刘伟  施建成 《水科学进展》2005,16(4):596-601
通过应用一阶离散植被模型,结合前人研究成果及雷达极化特性提出了多时相多极化雷达后向散射消除农作物覆盖层影响的算法:①应用已知的假设关系将植被层的体散射用交叉极化的总散射代替;②分析并将垂直极化的总后向散射中贡献很小的植被-土壤多次散射忽略;③将直接地表的后向散射分解成土壤水分与地表粗糙度的函数,使用重轨数据消除了地表粗糙度和农作物覆盖层的影响,并使用多时相全极化L波段(频率为1.2GHz)机载雷达测量数据进行验证,成功的估算了地表土壤水分的相对变化。  相似文献   
110.
Depending on season, rainfall characteristics and tree species, interception amounts to 15–50% of total precipitation in a forest under temperate climates. Many studies have investigated the importance of interception of different tree species in all kinds of different climates. Often authors merely determine interception storage capacity of that specific species and the considered event, and only sometimes a distinction is made between foliated and non‐foliated trees. However, interception is highly variable in time and space. First, since potential evaporation is higher in summer, but secondly because the storage capacity has a seasonal pattern. Besides weather characteristics, such as wind and rain intensity, snow causes large variations in the maximum storage capacity. In an experimental beech plot in Luxembourg, we found storage capacity of canopy interception to show a clear seasonal pattern varying from 0·1 mm in winter to 1·2 mm in summer. The capacity of the forest floor appears to be rather constant over time at 1·8 mm. Both have a standard deviation as high as ± 100%. However, the process is not sensitive to this variability resulting only in 11% variation of evaporation estimates. Hence, the number of raindays and the potential evaporation are stronger driving factors on interception. Furthermore, the spatial correlation of the throughfall and infiltration has been investigated with semi‐variograms and time stability plots. Within 6–7 m distance, throughfall and infiltration are correlated and the general persistence is rather weak. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号