首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   13篇
测绘学   10篇
地球物理   25篇
综合类   1篇
自然地理   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   1篇
  2011年   3篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2002年   2篇
  1997年   2篇
  1992年   2篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
21.
The potential of post‐tensioned self‐centering moment‐resisting frames (SC‐MRFs) and viscous dampers to reduce the economic seismic losses in steel buildings is evaluated. The evaluation is based on a prototype steel building designed using four different seismic‐resistant frames: (i) conventional moment resisting frames (MRFs); (ii) MRFs with viscous dampers; (iii) SC‐MRFs; or (iv) SC‐MRFs with viscous dampers. All frames are designed according to Eurocode 8 and have the same column/beam cross sections and similar periods of vibration. Viscous dampers are designed to reduce the peak story drift under the design basis earthquake (DBE) from 1.8% to 1.2%. Losses are estimated by developing vulnerability functions according to the FEMA P‐58 methodology, which considers uncertainties in earthquake ground motion, structural response, and repair costs. Both the probability of collapse and the probability of demolition because of excessive residual story drifts are taken into account. Incremental dynamic analyses are conducted using models capable to simulate all limit states up to collapse. A parametric study on the effect of the residual story drift threshold beyond which is less expensive to rebuild a structure than to repair is also conducted. It is shown that viscous dampers are more effective than post‐tensioning for seismic intensities equal or lower than the maximum considered earthquake (MCE). Post‐tensioning is effective in reducing repair costs only for seismic intensities higher than the DBE. The paper also highlights the effectiveness of combining post‐tensioning and supplemental viscous damping by showing that the SC‐MRF with viscous dampers achieves significant repair cost reductions compared to the conventional MRF. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
22.
The seismic performance of three‐ and six‐story buildings with fluidic self‐centering system is probabilistically assessed. The fluidic self‐centering systems consist of devices that are based on the technology of fluid viscous dampers but built in a way that pressurization of the devices results in preload that is explored to reduce or eliminate residual drift. The design of these buildings followed a procedure that parallels the design for structures with damping systems in ASCE 7 but modified to include the preload effect. Reference conventional buildings were also designed per ASCE 7 for comparison. These buildings were then analyzed to examine and compare their seismic collapse resistance and residual drift, where the residual drift limits of 0.2, 0.5, 1.0 and 2.0% of story height were selected as important thresholds. The study further calculated the mean annual frequency of collapse and corresponding exceedance probability over 50 years, and the mean annual frequency of exceeding the threshold residual story drift limits and the corresponding exceedance probability over 50 years. Variations in the design procedures by considering increased displacement capacity or damping or preload of the devices, different types of damping, increased ultimate strength of the self‐centering device–brace systems and increased frame strength were considered. It was found that increasing either the ultimate force capacity of the self‐centering device–brace system or the frame strength results in important improvements in the collapse resistance and in minimizing residual drift, whereas the variation of other design parameters has minor effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
23.
This paper examines higher mode effects in systems where the ductile mechanism for seismic design is the base moment‐rotation response. The modal properties of flexural and shear beams with uniform mass and elasticity and with a variable amount of base rotational restraint are derived. As the base fixity is released, the first mode becomes the rigid body rotation of the beam about the base, but the higher modes change much less, particularly for the shear beam model. Most response quantities that are of interest in the seismic design of typical mid‐rise buildings are controlled by the first two lateral modes, except at locations along the height where the second mode contributes little. However, the third and higher lateral modes are more significant for high‐rise buildings. Based on the theory of uniform cantilever shear beams, expressions are developed to avoid the need for a modal analysis to estimate the overturning moment, storey shear, and floor acceleration envelopes. Considering the measured response from the shake table testing of a large‐scale eight‐storey controlled rocking steel braced frame, the proposed expressions are shown to be of similar or better accuracy to a modified modal superposition technique, which combines the higher mode response from an elastic modal analysis with the response associated with achieving the maximum base overturning moment according to an inverted triangular load distribution. Because the proposed method uses only parameters that are available at the initial design stage, avoiding the analysis of a structural model, it is likely to be especially useful for preliminary design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
24.
This paper describes an investigation into the relationship of closure,a baseline offset and mean centeringto the interpretation of matrix rank.The equivalence of a certain type of closure to a constant baseline(i.e.a simple numerical offset which may vary between response channels but is constant over all samples)is demonstrated.A systematic approach to the interpretation of the rank of a matrix is given.  相似文献   
25.
Traditionally,one form of preprocessing in multivariate calibration methods such as principal componentregression and partial least squares is mean centering the independent variables(responses)and thedependent variables(concentrations).However,upon examination of the statistical issue of errorpropagation in multivariate calibration,it was found that mean centering is not advised for some datastructures.In this paper it is shown that for response data which(i)vary linearly with concentration,(ii)have no baseline(when there is a component with a non-zero response that does not change inconcentration)and(iii)have no closure in the concentrations(for each sample the concentrations of allcomponents add to a constant,e.g.100%)it is better not to mean center the calibration data.That is,the prediction errors as evaluated by a root mean square error statistic will be smaller for a model madewith the raw data than a model made with mean-centered data.With simulated data relativeimprovements ranging from 1% to 13% were observed depending on the amount of error in thecalibration concentrations and responses.  相似文献   
26.
利用机电一体化技术设计了一种新型的能自动整平对中的仪器支架,采用普通水准器和光电元件检测支架的水平性,由测绘员目测垂球对中偏差值并输入控制系统,通过小直流伺服电机自动调节支架的水平位置和支承点高度,构成了一个仪器支架水平性和对中性的闭环控制系统,实现了仪器支架的自动整平和半自动对中。  相似文献   
27.
Earthquake‐resilient steel frames, such as self‐centering frames or frames with passive energy dissipation devices, have been extensively studied during the past decade, but little attention has been paid to their column bases. The paper presents a rocking damage‐free steel column base, which uses post‐tensioned high‐strength steel bars to control rocking behavior and friction devices to dissipate seismic energy. Contrary to conventional steel column bases, the rocking column base exhibits monotonic and cyclic moment–rotation behaviors that are easily described using simple analytical equations. Analytical equations are provided for different cases including structural limit states that involve yielding or loss of post‐tensioning in the post‐tensioned bars. A step‐by‐step design procedure is presented, which ensures damage‐free behavior, self‐centering capability, and adequate energy dissipation capacity for a predefined target rotation. A 3D nonlinear finite element (FE) model of the column base is developed in abaqus . The results of the FE simulations validate the accuracy of the moment–rotation analytical equations and demonstrate the efficiency of the design procedure. Moreover, a simplified model for the column base is developed in OpenSees . Comparisons among the OpenSees and abaqus models demonstrate the efficiency of the former and its adequacy to be used in nonlinear dynamic analysis. A prototype steel building is designed as a self‐centering moment‐resisting frame with conventional or rocking column bases. Nonlinear dynamic analyses show that the rocking column base fully protects the first story columns from yielding and eliminates the first story residual drift without any detrimental effect on peak interstory drifts. The study focuses on the 2D rocking motion and, thus, ignores 3D rocking effects such as biaxial bending deformations in the friction devices. The FE models, the analytical equations, and the design procedure will be updated and validated to cover 3D rocking motion effects after forthcoming experimental tests on the column base. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
28.
Highway bridges in highly seismic regions can sustain considerable residual displacements in their columns following large earthquakes. These residual displacements are an important measure of post‐earthquake functionality, and often determine whether or not a bridge remains usable following an earthquake. In this study, a self‐centering system is considered that makes use of unbonded, post‐tensioned steel tendons to provide a restoring force to bridge columns to mitigate the problem of residual displacements. To evaluate the proposed system, a code‐conforming, case‐study bridge structure is analyzed both with conventional reinforced concrete columns and with self‐centering, post‐tensioned columns using a formalized performance‐based earthquake engineering (PBEE) framework. The PBEE analysis allows for a quantitative comparison of the relative performance of the two systems in terms of engineering parameters such as peak drift ratio as well as more readily understood metrics such as expected repair costs and downtime. The self‐centering column system is found to undergo similar peak displacements to the conventional system, but sustains lower residual displacements under large earthquakes, resulting in similar expected repair costs but significantly lower expected downtimes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
29.
论测量仪器的精密整平及对中技术   总被引:2,自引:1,他引:1  
本文比较全面的阐述了用于仪器整平、对中的各种技术,给出了实现仪器精密整平、对中的方法。并分析了对中误差对不同边长的角度测量精度的影响,指出短边测量时,对中偏差会严重影响观测质量,最后展望了摆脱整平、对中问题的前景。  相似文献   
30.
谢长湘 《四川测绘》1997,20(2):88-89
本文以解剖麻雀的方法,阐述了经Ⅲ型光学经纬仪坚轴系和水平盘的结构及其特点、拆卸方法和注意事项,对仪器维修具有实践性的指导价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号