首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22847篇
  免费   3655篇
  国内免费   5343篇
测绘学   1914篇
大气科学   1791篇
地球物理   4951篇
地质学   11905篇
海洋学   2892篇
天文学   5325篇
综合类   1378篇
自然地理   1689篇
  2024年   59篇
  2023年   203篇
  2022年   546篇
  2021年   697篇
  2020年   758篇
  2019年   1052篇
  2018年   793篇
  2017年   851篇
  2016年   896篇
  2015年   1030篇
  2014年   1443篇
  2013年   1380篇
  2012年   1497篇
  2011年   1682篇
  2010年   1633篇
  2009年   1945篇
  2008年   1813篇
  2007年   1815篇
  2006年   1743篇
  2005年   1493篇
  2004年   1334篇
  2003年   1118篇
  2002年   873篇
  2001年   766篇
  2000年   722篇
  1999年   675篇
  1998年   567篇
  1997年   396篇
  1996年   347篇
  1995年   293篇
  1994年   289篇
  1993年   240篇
  1992年   190篇
  1991年   133篇
  1990年   112篇
  1989年   132篇
  1988年   81篇
  1987年   50篇
  1986年   38篇
  1985年   35篇
  1984年   23篇
  1983年   17篇
  1982年   18篇
  1981年   9篇
  1980年   16篇
  1979年   2篇
  1978年   6篇
  1977年   15篇
  1954年   12篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
891.
This paper presents a single‐domain boundary element method (BEM) for linear elastic fracture mechanics analysis in the two‐dimensional anisotropic material. In this formulation, the displacement integral equation is collocated on the un‐cracked boundary only, and the traction integral equation is collocated on one side of the crack surface only. A special crack‐tip element was introduced to capture exactly the crack‐tip behavior. A computer program with the FORTRAN language has been developed to effectively calculate the stress intensity factors of an anisotropic material. This BEM program has been verified having a good accuracy with the previous researches. Furthermore, by analyzing the different anisotropic degree cracks in a finite plate, we found that the stress intensity factors of crack tips had apparent influence by the geometry forms of cracks and media with different anisotropic degrees. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
892.
A new numerical approach is proposed in this study to model the mechanical behaviors of inherently anisotropic rocks in which the rock matrix is represented as bonded particle model, and the intrinsic anisotropy is imposed by replacing any parallel bonds dipping within a certain angle range with smooth‐joint contacts. A series of numerical models with β = 0°, 15°, 30°, 45°, 60°, 75°, and 90° are constructed and tested (β is defined as the angle between the normal of weak layers and the maximum principal stress direction). The effect of smooth‐joint parameters on the uniaxial compression strength and Young's modulus is investigated systematically. The simulation results reveal that the normal strength of smooth‐joint mainly affects the behaviors at high anisotropy angles (β > 45°), while the shear strength plays an important role at medium anisotropy angles (30°–75°). The normal stiffness controls the mechanical behaviors at low anisotropy angles. The angle range of parallel bonds being replaced plays an important role on defining the degree of anisotropy. Step‐by‐step procedures for the calibration of micro parameters are recommended. The numerical model is calibrated to reproduce the behaviors of different anisotropic rocks. Detailed analyses are conducted to investigate the brittle failure process by looking at stress‐strain behaviors, increment of micro cracks, initiation and propagation of fractures. Most of these responses agree well with previous experimental findings and can provide new insights into the micro mechanisms related to the anisotropic deformation and failure behaviors. The numerical approach is then applied to simulate the stress‐induced borehole breakouts in anisotropic rock formations at reduced scale. The effect of rock anisotropy and stress anisotropy can be captured. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
893.
Snow availability in Alpine catchments plays an important role in water resources management. In this paper, we propose a method for an optimal estimation of snow depth (areal extension and thickness) in Alpine systems from point data and satellite observations by using significant explanatory variables deduced from a digital terrain model. It is intended to be a parsimonious approach that may complement physical‐based methodologies. Different techniques (multiple regression, multicriteria analysis, and kriging) are integrated to address the following issues: We identify the explanatory variables that could be helpful on the basis of a critical review of the scientific literature. We study the relationship between ground observations and explanatory variables using a systematic procedure for a complete multiple regression analysis. Multiple regression models are calibrated combining all suggested model structures and explanatory variables. We also propose an evaluation of the models (using indices to analyze the goodness of fit) and select the best approaches (models and variables) on the basis of multicriteria analysis. Estimation of the snow depth is performed with the selected regression models. The residual estimation is improved by applying kriging in cases with spatial correlation. The final estimate is obtained by combining regression and kriging results, and constraining the snow domain in accordance with satellite data. The method is illustrated using the case study of the Sierra Nevada mountain range (Southern Spain). A cross‐validation experiment has confirmed the efficiency of the proposed procedure. Finally, although it is not the scope of this work, the snow depth is used to asses a first estimation of snow water equivalent resources.  相似文献   
894.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   
895.
The scaled boundary finite‐element method, a semi‐analytical computational scheme primarily developed for dynamic stiffness of unbounded domains, is applied to the analysis of unsteady seepage flow problems. This method is based on the finite‐element technology and gains the advantages of the boundary element method as well. Only boundary of the domain is discretized, no fundamental solution is required and singularity problems can be modeled rigorously. Anisotropic and non‐homogeneous materials satisfying similarity are modeled with no additional efforts. In this study, firstly, formulation of the method for the transient seepage flow problems is derived followed by its solution procedures. The accuracy, simplicity and applicability of the method are demonstrated via four numerical examples of transient seepage flow – three of them are available in the literature. Homogenous, non‐homogenous, isotropic and anisotropic material properties are considered to show the versatility of the technique. Excellent agreement with the finite‐element method is observed. The method out‐performs the finite‐element method in modeling singularity points. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
896.
An energy-based liquefaction potential evaluation method (EBM) previously developed was applied to a uniform sand model shaken by seismic motions recorded at different sites during different magnitude earthquakes. It was also applied to actual liquefaction case histories in Urayasu city during the 2011 M9.0 Tohoku earthquake and in Tanno-cho during the 2003 M8.0 Tokachi-oki earthquake. In all these evaluations, the results were compared with those by the currently used stress-based method (SBM) under exactly the same seismic and geotechnical conditions. It was found that EBM yields similar results with SBM for several ground motions of recent earthquakes but has easier applicability without considering associated parameters. In Urayasu city, the two methods yielded nearly consistent results by using an appropriate coefficient in SBM for the M9.0 earthquake, though both overestimated the actual liquefaction performance, probably because effects of plasticity and aging on in situ liquefaction strength were not taken into account. In Tanno-cho, EBM could evaluate actual liquefaction performance due to a small-acceleration motion during a far-field large magnitude earthquake while SBM could not.  相似文献   
897.
Using results from coupled climate model simulations of the 8.2 ka climate event that produced a cold period over Greenland in agreement with the reconstructed cooling from ice cores, we investigate the typical pattern of climate anomalies (fingerprint) to provide a framework for the interpretation of global proxy data for the 8.2 ka climate event. For this purpose we developed an analysis method that isolates the forced temperature response and provides information on spatial variations in magnitude, timing and duration that characterise the detectable climate event in proxy archives. Our analysis shows that delays in the temperature response to the freshwater forcing are present, mostly in the order of decades (30 a over central Greenland). The North Atlantic Ocean initially cools in response to the freshwater perturbation, followed in certain parts by a warm response. This delay, occurring more than 200 a after the freshwater pulse, hints at an overshoot in the recovery from the freshwater perturbation. The South Atlantic and the Southern Ocean show a warm response reflecting the bipolar seesaw effect. The duration of the simulated event varies for different areas, and the highest probability of recording the event in proxy archives is in the North Atlantic Ocean area north of 40° N. Our results may facilitate the interpretation of proxy archives recording the 8.2 ka event, as they show that timing and duration cannot be assumed to correspond with the timing and duration of the event as recorded in Greenland ice cores. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
898.
899.
We propose a discrete element model for brittle rupture. The material consists of a bidimensional set of closed‐packed particles in contact. We explore the isotropic elastic behavior of this regular structure to derive a rupture criterion compatible to continuum mechanics. We introduce a classical criterion of mixed mode crack propagation based on the value of the stress intensity factors, obtained by the analysis of two adjacent contacts near a crack tip. Hence, the toughness becomes a direct parameter of the model, without any calibration procedure. We verify the consistency of the formulation as well as its convergence by comparison with theoretical solutions of tensile cracks, a pre‐cracked beam, and an inclined crack under biaxial stress. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
900.
We propose a numerical method that couples a cohesive zone model (CZM) and a finite element‐based continuum damage mechanics (CDM) model. The CZM represents a mode II macro‐fracture, and CDM finite elements (FE) represent the damage zone of the CZM. The coupled CZM/CDM model can capture the flow of energy that takes place between the bulk material that forms the matrix and the macroscopic fracture surfaces. The CDM model, which does not account for micro‐crack interaction, is calibrated against triaxial compression tests performed on Bakken shale, so as to reproduce the stress/strain curve before the failure peak. Based on a comparison with Kachanov's micro‐mechanical model, we confirm that the critical micro‐crack density value equal to 0.3 reflects the point at which crack interaction cannot be neglected. The CZM is assigned a pure mode II cohesive law that accounts for the dependence of the shear strength and energy release rate on confining pressure. The cohesive shear strength of the CZM is calibrated by calculating the shear stress necessary to reach a CDM damage of 0.3 during a direct shear test. We find that the shear cohesive strength of the CZM depends linearly on the confining pressure. Triaxial compression tests are simulated, in which the shale sample is modeled as an FE CDM continuum that contains a predefined thin cohesive zone representing the idealized shear fracture plane. The shear energy release rate of the CZM is fitted in order to match to the post‐peak stress/strain curves obtained during experimental tests performed on Bakken shale. We find that the energy release rate depends linearly on the shear cohesive strength. We then use the calibrated shale rheology to simulate the propagation of a meter‐scale mode II fracture. Under low confining pressure, the macroscopic crack (CZM) and its damaged zone (CDM) propagate simultaneously (i.e., during the same loading increments). Under high confining pressure, the fracture propagates in slip‐friction, that is, the debonding of the cohesive zone alternates with the propagation of continuum damage. The computational method is applicable to a range of geological injection problems including hydraulic fracturing and fluid storage and should be further enhanced by the addition of mode I and mixed mode (I+II+III) propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号