首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   10篇
  国内免费   23篇
大气科学   54篇
地球物理   1篇
海洋学   1篇
综合类   1篇
自然地理   1篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2015年   3篇
  2014年   4篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1989年   2篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
11.
广西秋季层状云微物理特征分析   总被引:1,自引:0,他引:1  
利用2012年11—12月在广西进行的11架次飞机云物理探测资料对层状云宏微观物理结构特征进行研究,探讨层状云降水机制。结果表明:广西层状云微物理特征与我国其他地区的存在显著差异。层状云典型的微物理垂直结构为在云下层是由凝结作用生成云滴,随上升气流发展,云滴数浓度、平均直径和液态水含量随高度逐步增加,云滴谱拓宽,谱型向大尺度的方向扩展,至云中上层增大至最大值后随高度减小。冷暖混合云结构的高层云冷云部分的冰相粒子落入暖层后对其微物理结构产生影响,主要是使云滴谱展宽,CIP云滴平均直径垂直分布变幅增大,有利于暖层中碰并过程的启动和发展。层积云微物理水平分布呈现不连续跳跃式变化特征,存在对流泡结构,对流泡内各微物理量高于泡外,云滴谱型向大尺度移动,对流泡结构是层积云形成降水的重要机制。  相似文献   
12.
利用WRF模式和1°×1°的NCEP再分析资料,对2007年7月14日宁夏固原市发生的一次强对流天气进行了数值模拟,并分析了此次强对流天气的有利环流形势、物理量场分布以及雷达回波特征。结果表明:(1)WRF模拟的降水区较实况略偏东南,且降水量偏大;(2)WRF模拟的高层辐散和中低层辐合配置、"喇叭口"探空曲线与对流性降水区较为符合;(3)霰、雪是雨水形成的主要来源,云水又是雪和霰增长的主要来源;(4)云滴数浓度对对流云降水及水成物分布有重要的影响。增加云滴数浓度,前期可使对流云产生的累计降水量和范围均有减少,后期高浓度状况下存在大量冰相粒子,造成累计降水量及范围大于低、中浓度的降水;增加云滴数浓度,云水含量增加,前期雨水、冰晶、霰含量减少,后期雨水、冰晶、霰含量增多。  相似文献   
13.
云微物理参数的地基探测反演研究综述   总被引:1,自引:1,他引:0  
云相态、云滴谱分布和云液态水含量作为重要的云微物理参数,对气候变化、天气变化、人工影响天气和飞行安全等很多方面都有着重要的影响。云微物理参数的研究已是国际气象学研究领域中的热点之一,而在国内这方面的研究较少。简要论述了地基方法在云微物理学研究的优越性,扼要总结了国内外地基探测技术的发展现状,重点概括了云相态、云滴谱和云液态水3个参数的地基反演算法,并予以评价,展望了未来发展趋势,为国内云微物理研究提供了参考与借鉴。  相似文献   
14.
基于多元体系化学势和相平衡原理,分析认为“水蒸气凝结释放的潜热既升高了云滴表面温度,又向外传导热量”的观点违反了热力学第二定律,指出这样热传导过程是不可能进行的,分析认为大气中水蒸气凝结只能以辐射形式释放潜热。  相似文献   
15.
利用FY-2C卫星数据反演云辐射特性   总被引:2,自引:0,他引:2  
周青  赵凤生  高文华 《大气科学》2010,34(4):827-842
本文利用FY-2C静止卫星提供的可见光、中红外和热红外观测数据, 开展了水云光学厚度、粒子有效半径和云顶温度的云参数遥感探测理论和反演方法研究。基于FY-2C可见光、中红外(3.75 μm)与热红外(11 μm)通道辐射率对云光学厚度、 云滴有效半径、云顶温度辐射参数的敏感性分析, 提出三通道同时反演云的光学厚度、云滴有效半径及云顶温度的迭代方案; 通过个例分析进行了云参数反演试验, 并将结果与MODIS的云反演产品进行了对比, 最后对反演误差进行了分析。主要结论如下:(1) 个例反演得到的云参数与各通道探测数据有着较好的对应关系, 迭代计算标准偏差在允许的计算精度范围内(<0.89%), 反演结果具有合理性; (2) 通过与MODIS云反演产品的对比可以看到, 两者云光学厚度、云滴有效半径的均值和直方图分布都非常一致, 而MODIS的云顶温度比FY-2C反演值要高, 考虑到FY-2C的 11 μm通道测量的辐射值与MODIS相比偏小, 因此认为我们的反演方法与MODIS方法的精度是相当的。  相似文献   
16.
运用已建立的气溶胶核化清除的物理化学模式,研究了云的动力学因子(如:气块上升速度、夹卷作用)对云滴化学非均匀性的影响。计算结果表明:较强烈的云发展(较大的气块上升速度)可加强由于气溶胶核化和云滴凝结增长造成的云滴化学的非均匀程度。夹卷作用抑制了云的发展,因而减弱了这种非均匀程度。夹卷作用同时也造成总体液态水中S(VI)、H+等浓度的增加,在Smax附近可达1个量级。如果考虑气溶胶粒子的夹卷,则可使气块内云滴污染物浓度随云滴大小的变化更加复杂化,如:不仅云滴污染物浓度随云滴大小而变化,即使对于相同大小的云滴之间,其污染物浓度也可相差很大。  相似文献   
17.
北疆冬季层状云微物理结构初探   总被引:7,自引:0,他引:7  
利用PMS云粒子测量仪器,对1987年11月16日新疆北部沿天山一带的冬季层状云进行云微物理结构研究。云呈带状结构,带宽46km左右。云为上、下两层,发现下层云云顶之上有上层云引晶催化,影响了下层云微物理结构特征,使下层云由过冷液态水云向冰水混合云转化,并有发展成冰云的趋势。  相似文献   
18.
沙尘气溶胶粒子表面变性对云滴形成过程的影响   总被引:9,自引:2,他引:9  
利用1997年5月14日辽宁省气溶胶和云滴谱航测资料,讨论了沙尘气溶胶粒子表面变性产生的不溶性沙尘粒子外包可溶性硫酸铵层的混合气溶胶粒子作为凝结核的增长规律,计算了由混和核形成的云滴谱特征,并与纯硫酸铵盐核进行对比.结果表明:混和核上初期形成的云滴谱型比纯硫酸铵盐核上初期形成的云滴谱型要宽,更接近实际观测到的云滴谱分布.  相似文献   
19.
利用CloudSat卫星资料分析云微物理和光学性质的分布特征   总被引:3,自引:0,他引:3  
利用2007年1月2010年12月高垂直分辨率CloudSat卫星的2B数据产品,对云微物理特征量(包括云中液态水/冰水含量、液态水/冰水路径、云滴有效半径等)以及云光学参数(云光学厚度等)的全球分布和季节变化进行了统计分析,并研究了云微物理性质对光学性质的影响。结果表明,冰水路径分布在北美南部、南美大陆、非洲大陆、澳大利亚和南亚的陆地上空,以及太平洋、大西洋和印度洋的洋面上空,高值区最大值达600 g·m-2以上;垂直方向上,高值区位于赤道地区8 km附近以及中纬度地区4~8 km高度上。液态水路径在300 g·m-2以上的高值区主要位于太平洋、印度洋和大西洋的中低纬度海域上空,垂直上液态水含量随高度递减。冰云有效半径在高纬度地区近地面层达200μm以上,在赤道附近4~8 km上有1个高值区,南北半球中纬度地区2~4 km上有2个高值区,最大值均达到80μm以上。在1 km以下的边界层水云有效半径值较大,达到12μm以上。总云光学厚度在全球大部分地区40,高值区普遍位于中高纬度的广阔地区和低纬度靠近大陆的洋面上空;垂直方向上,云光学厚度的高值集中在2 km以下的边界层。云光学厚度的分布受云量、云水含量和云滴有效半径的影响,云量大的地区基本为云光学厚度的大值区。  相似文献   
20.
不同天气系统层状云微物理特征个例分析   总被引:2,自引:1,他引:1  
周黎明  牛生杰  王俊 《气象》2014,40(3):327-335
利用PMS粒子测量系统和机载温湿仪观测获取的吉林省2007年5月15日高空槽和5月28日冷涡天气下降水云垂直探测资料,对比分析了两次不同天气系统下形成降水过程中云系的宏微观结构特征。结果发现,高空槽影响下的As云中云滴数浓度最大值比冷涡影响的As-Sc云系高一倍;液态水含量方面,高空槽系统下As云中在0℃附近取得最大值,冷涡系统下As-Sc云系中,最大值出现在上层As云中-4.8℃左右处。高空槽系统影响下的As云中,FSSP-100、2D-C和2D-P探测到的粒子数浓度、含水量和平均直径随高度呈不均匀性分布;而冷涡影响的As-Sc云中,FSSP-100测得As云中粒子平均直径远大于Sc,2D-C和2D-P探测到的上层As云中粒子浓度和液态含水量分布相对均匀,而下层Sc中粒子浓度、液态含水量值和平均直径都很小,这是由于云层之间存在干层,使As云中的部分大云滴和雨滴在下降过程中迅速蒸发,不利于降水形成。不同高度层FSSP-100测得的粒子平均谱分布均差异较大。对云中可播性进行研究,结果发现高空槽影响的As云中可播区均为强可播区,冷涡系统影响的As-Sc云中可播区的1/2为强可播区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号