首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   546篇
  免费   155篇
  国内免费   260篇
测绘学   10篇
大气科学   383篇
地球物理   137篇
地质学   125篇
海洋学   188篇
天文学   14篇
综合类   39篇
自然地理   65篇
  2024年   2篇
  2023年   8篇
  2022年   17篇
  2021年   23篇
  2020年   18篇
  2019年   23篇
  2018年   31篇
  2017年   42篇
  2016年   36篇
  2015年   24篇
  2014年   23篇
  2013年   48篇
  2012年   27篇
  2011年   18篇
  2010年   28篇
  2009年   25篇
  2008年   58篇
  2007年   37篇
  2006年   40篇
  2005年   46篇
  2004年   36篇
  2003年   50篇
  2002年   50篇
  2001年   35篇
  2000年   23篇
  1999年   31篇
  1998年   44篇
  1997年   18篇
  1996年   15篇
  1995年   15篇
  1994年   13篇
  1993年   16篇
  1992年   18篇
  1991年   9篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有961条查询结果,搜索用时 46 毫秒
771.
Southwest Pacific subtropical mode water: A climatology   总被引:1,自引:0,他引:1  
The large-scale distribution and changes in Southwest Pacific subtropical mode water (STMW) are investigated and discussed. The paper presents for the first time geographic maps showing the spatial distribution of STMW thicknesses, with a vertical temperature gradient <2.0 °C/100 m occupying the 14–20 °C range below the mixed layer depth, across the entire Southwest Pacific region. STMW changes in areal thickness extent, vertical cross-sectional area along selected transects, and total volume, are examined on seasonal and interannual time scales between 1973 and 1988.We find that STMW extends across the entire width of the Tasman Sea in a very broad swath between the Tropical Convergence in the north (just to the south of New Caledonia), the southeast Australian coast in the west to as far south as 39°S (likely due to the southward extension of the EAC), and eastwards along the Southern STMW boundary in a meandering pathway that broadly follows the Tasman Front. The total STMW volume across the region (i.e., west of 180°) varies seasonally by a factor of more than three between the estimated maximum of 6.6 (±0.5) × 1014 m3 in October and minimum of 1.9 (±0.4) × 1014 m3 in May. Interannual variations O (±0.5 × 1014 m3) are also observed in the spatial extent of the thick mode water and its total volume. El Niño composite maps show an anomalous thickening of the STMW during the El Niño year with October positive thickness anomalies in excess of +20 m (total volume anomaly of +0.6 × 1014 m3) manifested throughout the subtropical gyre interior as far north as New Caledonia. Total volume anomalies tend to be positive from January of the El Niño year through to the July following (18 months). The maximum correlation coefficient r = −0.3 between 3-monthly STMW volume anomalies and the Southern Oscillation index is statistically significant at the 95% confidence level. We conclude that during the anomalous cooling of the upper Southwest Pacific Ocean in the El Niño year, winter-time convection and STMW formation is enhanced across the region resulting in an El Niño – Southern Oscillation climate signal that is identifiable below the mixed layer by the increased STMW volume which persists through to the following winter. Finally, some evidence for the possible decadal modulation of the STMW variability is also discussed.  相似文献   
772.
The El Niño of 1997–98 was one of the strongest warming events of the past century; among many other effects, it impacted phytoplankton along the Peruvian coast by changing species composition and reducing biomass. While responses of the main fish resources to this natural perturbation are relatively well known, understanding the ecosystem response as a whole requires an ecotrophic multispecies approach. In this work, we construct trophic models of the Northern Humboldt Current Ecosystem (NHCE) and compare the La Niña (LN) years in 1995–96 with the El Niño (EN) years in 1997–98. The model area extends from 4°S–16°S and to 60 nm from the coast. The model consists of 32 functional groups of organisms and differs from previous trophic models of the Peruvian system through: (i) division of plankton into size classes to account for EN-associated changes and feeding preferences of small pelagic fish, (ii) increased division of demersal groups and separation of life history stages of hake, (iii) inclusion of mesopelagic fish, and (iv) incorporation of the jumbo squid (Dosidicus gigas), which became abundant following EN. Results show that EN reduced the size and organization of energy flows of the NHCE, but the overall functioning (proportion of energy flows used for respiration, consumption by predators, detritus and export) of the ecosystem was maintained. The reduction of diatom biomass during EN forced omnivorous planktivorous fish to switch to a more zooplankton-dominated diet, raising their trophic level. Consequently, in the EN model the trophic level increased for several predatory groups (mackerel, other large pelagics, sea birds, pinnipeds) and for fishery catch. A high modeled biomass of macrozooplankton was needed to balance the consumption by planktivores, especially during EN condition when observed diatoms biomass diminished dramatically. Despite overall lower planktivorous fish catches, the higher primary production required-to-catch ratio implied a stronger ecological impact of the fishery and stresses the need for precautionary management of fisheries during and after EN. During EN energetic indicators such as the lower primary production/total biomass ratio suggest a more energetically efficient ecosystem, while reduced network indicators such as the cycling index and relative ascendency indicate of a less organized state of the ecosystem. Compared to previous trophic models of the NHCE we observed: (i) a shrinking of ecosystem size in term of energy flows, (ii) slight changes in overall functioning (proportion of energy flows used for respiration, consumption by predators and detritus), and (iii) the use of alternate pathways leading to a higher ecological impact of the fishery for planktivorous fish.  相似文献   
773.
The surf clam Mesodesma donacium is an economically important species for Chilean and Peruvian shellfisheries. This clam is often infested by Polydora bioccipitalis, a species belonging to the Spionidae, the most common parasitic polychaete group. To study this association, clams were sampled monthly over a one-year period in northern Chile. Collected clams covered the entire available size range and were classified into four infestation levels in order to study: (1) the relationship between prevalence of infestation (PI) and host size, (2) the temporal pattern of infestation events related to seasonal temperature changes, and (3) the relationship between infestation, body condition index (BCI) and gonado-somatic index (GSI). Additionally, growth rate and digging ability of clams with different infestation levels was studied. A logistic regression model best explained the relationship between PI and host size, with the smallest infested clam being 34 mm long and PI increasing steeply thereafter. Ontogenetic shifts in the habitat of the clam and ontogenetic changes, mainly in shell morphology, seem to explain the sigmoid pattern. Periods of increased shell blistering after infestation by P. bioccipitalis showed a similar seasonal pattern with GSI and BCI of non-infested clams, suggesting either an association between infestation ability and low condition of the clam or common environmental triggers for those factors. Heavily infested clams showed a significant lower BCI, growth rate and digging ability; however, given its low number, they are unlikely to be significant in terms of the local population survival. However, the infestation could play a key role in explaining mass mortality of northern populations during El Niño events, given the latitudinal differences in PI and the fact that infestation ability could be enhanced by increased temperature and facilitated in stressed clams.  相似文献   
774.
赤道太平洋-印度洋海洋上层海温分析   总被引:5,自引:0,他引:5  
用来自美国Scripps海洋研究所的海温再分析资料,通过对1955-2001年赤道印度洋和太平洋上层0-400m的海温月平均距平分析,讨论了该两大洋海温之间的联系,得到了一些有意义的结果.赤道印度洋和太平洋虽然有马来半岛、苏门答腊岛、爪哇岛等岛屿阻隔,但海洋上层海温距平在东西方向上的分布是连续的,基本呈正负正或者负正负的分布格局,这3大冷暖中心分别位于赤道中印度洋、赤道东印度洋-西太平洋和赤道中东太平洋,正负区域的交界处分别位于印度洋80°E和太平洋160°-135°W附近,正好对应于赤道印度洋和太平洋温跃层深度的不连续处,在该不连续处赤道印度洋的温跃层深度变化大于太平洋的温跃层深度变化.在赤道印度洋和太平洋的3大冷暖中心中,赤道东印度洋-西太平洋的冷暖中心是一个系统,在太平洋它的移动路径是由赤道西太平洋出发,沿着赤道向东,到赤道东太平洋转向北,到10°N再转向西,到赤道西太平洋再转向南回到赤道西太平洋,组成一个逆时针回路;而在印度洋则是由赤道东印度洋出发,向赤道西北印度洋移动,和赤道中南印度洋组成一个逆时针回路;而且这2个移动回路是同时存在的,由赤道东印度洋和西太平洋开始分别同时完成冷暖中心交替的时间大约是10个月.  相似文献   
775.
基于ERA5的逐小时100 m风场数据,利用时间序列K-means聚类方法,将中国沿海冬季风能年际变化划分为四个区域,分别为北中国海(North China Sea,NCS)、东海(East China Sea,ECS)、南海北部(Northern South China Sea,NSCS)及南海南部(Southern South China Sea,SSCS)。四个区域风能的年际变化受不同气候模态的影响,其中NCS风能的年际变化与北极涛动(Arctic Oscillation,AO)有关;ECS风能的年际变化与中部型ENSO及西伯利亚高压有关;SSCS和NSCS的年际变化则和东部型ENSO及大陆高压的南北位置存在联系。鉴于影响各区域风能年际变化的气候模态具有较高的可预测性,进一步评估了多个气候模式对中国沿海风能年际变化的预测技巧。结果表明,气候模式对南中国海的风能年际变化预测技巧更高,这与气候模式对ENSO的高预测技巧有关。气候模式对北方海域风能年际变化的预测技巧较差,这和气候模式不能较好地预测AO和西伯利亚高压有关。  相似文献   
776.
On the basis of more than 200-year control run, the performance of the climate system model of Chinese Academy of Sciences(CAS-ESM-C) in simulating the El Ni?o-Southern Oscillation(ENSO) cycle is evaluated, including the onset, development and decay of the ENSO. It is shown that, the model can reasonably simulate the annual cycle and interannual variability of sea surface temperature(SST) in the tropical Pacific, as well as the seasonal phase-locking of the ENSO. The model also captures two prerequisites for the El Ni?o onset, i.e., a westerly anomaly and a warm SST anomaly in the equatorial western Pacific. Owing to too strong forcing from an extratropical meridional wind, however, the westerly anomaly in this region is largely overestimated. Moreover, the simulated thermocline is much shallower with a weaker slope. As a result, the warm SST anomaly from the western Pacific propagates eastward more quickly, leading to a faster development of an El Ni?o. During the decay stage, owing to a stronger El Ni?o in the model, the secondary Gill-type response of the tropical atmosphere to the eastern Pacific warming is much stronger, thereby resulting in a persistent easterly anomaly in the western Pacific. Meanwhile, a cold anomaly in the warm pool appears as a result of a lifted thermocline via Ekman pumping. Finally, an El Ni?o decays into a La Ni?a through their interactions. In addition, the shorter period and larger amplitude of the ENSO in the model can be attributed to a shallower thermocline in the equatorial Pacific, which speeds up the zonal redistribution of a heat content in the upper ocean.  相似文献   
777.
北赤道流区海温异常与ENSO循环   总被引:14,自引:1,他引:14  
应用热带太平洋上层XBT温度资料,分析探讨了西太平洋暖池区次表层海温冷暖异常信号的变化规律,揭示了影响西太平洋暖池区次表层海温冷暖异常信号的机制。分析表明,西太平洋暖池区的次表层海温异常冷暖与太平洋北赤道流的海温冷暖异常信号西传有重要关系。北赤道流的海温异常冷(暖)信号是沿温跃层由赤道中东太平洋潜沉向西太平洋暖池区传播,对暖池区域次表层海温场产生重要影响。这一传播过程与西太平洋次表层海温异常暖(冷)信号向赤道中东太平洋传播,构成了热带海洋信号的气旋式“信号通道”。在这一“信号通道”中,北赤道流的海温异常信号西传是导致西太平洋暖池区及西太平洋次表层海温异常的重要机制,是影响El Nifio和La Nifia事件发生的关键。  相似文献   
778.
本文对1985—1987年中国科学院“实验3”号考察船三个航次的赤道西太平洋考察资料的分析表明,海洋输向大气的热通量随季节变化不明显,各通量总的分布是西高东低。在1986—1987年厄尔尼诺影响下,海表水温较常年偏高,天气变化较历史上的厄尔尼诺年显著。  相似文献   
779.
The marine ecosystem located off the coast of central and northern Peru has stood as the “world’s champion” producer, by far, of exploitable fish biomass, generally yielding more than 20 times the tonnage of fishery landings produced by other comparable regional large marine ecosystems of the world’s oceans that operate under similar dynamic contexts and are characterized by comparable, or even greater, basic primary production. Two potentially contributing aspects are discussed from a framework of interregional comparative pattern recognition: (1) the advantageous low-latitude situation that combines strong upwelling-based nutrient enrichment with low wind-induced turbulence generation and relatively extended mean “residence times” within the favorable upwelling-conditioned near-coastal habitat and (2) the cyclic “re-setting” of the system by ENSO perturbations that may tend to interrupt malignant growth of adverse self-amplifying feedback loops within the nonlinear biological dynamics of the ecosystem.There is a developing scientific consensus that one of the more probable consequences of impending global climate changes will be a general slowing of the equatorial Pacific Walker Circulation and a consequent weakening of the Pacific trade wind system. Since the upwelling-favorable winds off Peru tend to flow directly into the Pacific southeast trade winds, a question arises as to the likely effect on the upwelling-producing winds that power the productivity of the regional coastal ecosystems of the Peru–Humboldt Current zone. It is argued that the effects will in fact be decoupled to the extent that upwelling-favorable winds will actually tend to increase off Peru. Data demonstrative of this decoupling are presented. A tendency for less intense El Niño episodes in the future is also suggested. These conclusions provide a framework for posing certain imponderables as to the future character of the Peruvian marine ecosystem and of the fisheries it supports.  相似文献   
780.
The Humboldt Current System (HCS) is dominated by two pelagic species; Peruvian anchovy or anchoveta (Engraulis ringens) and sardine (Sardinops sagax). Using data from 43 acoustic surveys conducted from 1983 through 2005 by the Peruvian Marine Institute (IMARPE), we examined the distribution of these two species relative to water masses. We tested the hypothesis that anchovy was found more frequently in upwelled cold coastal water (CCW) and mixed waters (MCW) than in other water types and that sardine was more associated with more offshore oceanic surface subtropical water (SSW). Surface temperature, salinity, latitude, season and distance to the coast data were used to define water masses. Results using generalized additive models (GAM), modelling sardine and anchovy presence–absence as a function of year, water body, bottom depth and latitude, showed that anchovy were primarily found in CCW and MCS, while sardine were more ubiquitous relative to water masses with some predilection for SSW. These results were supported by various indexes of anchovy and sardine distribution versus water mass as well as temporal and location variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号