首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7149篇
  免费   1071篇
  国内免费   2266篇
测绘学   69篇
大气科学   877篇
地球物理   1175篇
地质学   1920篇
海洋学   5491篇
天文学   33篇
综合类   448篇
自然地理   473篇
  2024年   18篇
  2023年   70篇
  2022年   247篇
  2021年   247篇
  2020年   262篇
  2019年   268篇
  2018年   271篇
  2017年   286篇
  2016年   260篇
  2015年   307篇
  2014年   486篇
  2013年   497篇
  2012年   340篇
  2011年   471篇
  2010年   364篇
  2009年   617篇
  2008年   540篇
  2007年   563篇
  2006年   473篇
  2005年   491篇
  2004年   400篇
  2003年   377篇
  2002年   393篇
  2001年   303篇
  2000年   278篇
  1999年   257篇
  1998年   205篇
  1997年   206篇
  1996年   171篇
  1995年   144篇
  1994年   141篇
  1993年   119篇
  1992年   100篇
  1991年   74篇
  1990年   41篇
  1989年   63篇
  1988年   22篇
  1987年   17篇
  1986年   11篇
  1985年   20篇
  1984年   17篇
  1983年   12篇
  1982年   11篇
  1981年   18篇
  1978年   6篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
991.
郯庐深断裂带自安徽庐江—山东郯城、沂水、安丘一线向北延伸进入渤海海域被新生代盆地沉积层和海水覆盖。根据区域重、磁力异常图解释的渤海海域的郯庐深断裂带位于莱州湾—渤海东部—辽东湾东部一线,总体走向NNE,对应于渤海海域NNE向地幔隆起带的东部斜坡。渤海海域新生代盆地与地幔隆起呈镜像反映,构成古近纪断陷的边界断层包括NE向、NNE向、NEE向、NW向和NWW向等多个方向,且多表现出铲式正断层的几何学、运动学特征。渤海海域新生代盆地在莱州湾—渤海东部—辽东湾东部发育有由2~4条走向NNE向、陡倾斜的基底走滑断层及相关构造变形组成的右旋走滑构造带,位置与区域重磁资料解释的郯庐深断裂带大致相当。综合深层地壳结构和新生代盆地构造特征有理由认为,渤海海域中新生代盆地中的走向NNE向、陡倾斜的基底走滑断层构造带的与深层至少切割莫霍面的深断裂带构成了一条地壳尺度垂向的强变形构造带。渤海海域的郯庐深断裂带在新生代时期郯庐断裂带并非只发生右旋走滑运动,在区域裂陷作用中控制古近纪断陷的伸展断层可能利用了深断裂带在浅层地壳的部分断层面,并且因为伸展位移在中地壳层中发生拆离滑脱,而深断裂带的右旋走滑位移才使浅层断层与深层断层保持紧密联系。  相似文献   
992.
北太平洋及东亚地区在始新世左右发生了一系列重大地质事件:日本海发生开裂;日本西南和中国板块北部发生顺时针旋转(20°);NNW向运动的太平洋板块突然改变方向开始NWW向运动;郯庐断裂带由强烈断陷造成快速冷却事件;渤海湾盆地出现地幔热异常开始形成裂谷系;阿尔金断裂开始脉冲式走滑;贝加尔湖裂谷开始形成。这些重大地质事件的发生都与日本海陨击事件相关。  相似文献   
993.
南海北部深水西区中中新世混合沉积模式及控制因素   总被引:1,自引:0,他引:1  
以新采集的地震资料为基础,对南海北部深水西区的混合沉积作了初步研究。混合沉积在地震剖面上表现为平行—亚平行,振幅强—中,频率中等及连续性中等的反射特征。混合沉积分布在研究区地震资料覆盖范围的西北角,发育规模较大,最大长度达44.7km,最大宽度33.2km,面积1084km2,最大厚度为138m,纵向上分布在中中新统梅山组。综合南海北部构造演化、地震勘探等研究成果,建立了混合沉积模式。该混合沉积分布于半深海沉积区,由其南东东方向的西沙—广乐台地提供碳酸盐岩碎屑(同时也提供部分硅质碎屑),由其西侧的中南半岛提供主要的硅质碎屑。在南海北部深水西区,控制混合沉积分布的主要因素为构造作用(包括海平面变化)、物源供给及水动力条件等三个方面,这三者之间又具有密切的内在联系。  相似文献   
994.
Frontal upwelling is an important phenomenon in summer in the Yellow Sea (YS) and plays an essential role in the distribution of nutrients and biological species. In this paper, a three-dimensional hydrodynamic model is applied to investigate the characteristics and influencing factors of frontal upwelling in the YS. The results show that the strength and distribution of frontal upwelling are largely dependent on the topography and bottom temperature fronts. The frontal upwelling in the YS is stronger and narrower near the eastern coast than near the western coast due to the steeper shelf slope. Moreover, external forcings, such as the meridional wind speed and air temperature in summer and the air temperature in the preceding winter and spring, have certain influences on the strength of frontal upwelling. An increase in air temperature in the previous winter and spring weakens the frontal upwelling in summer; in contrast, an increase in air temperature in summer strengthens the frontal upwelling. When the southerly wind in summer increases, the upwelling intensifies in the western YS and weakens in the eastern YS. The air temperature influences the strength of upwelling by changing the baroclinicity in the frontal region. Furthermore, the meridional wind speed in summer affects frontal upwelling via Ekman pumping.  相似文献   
995.
The Dongfang1-1 gas field (DF1-1) in the Yinggehai Basin is currently the largest offshore self-developed gas field in China and is rich in oil and gas resources. The second member of the Pliocene Yinggehai Formation (YGHF) is the main gas-producing formation and is composed of various sedimentary types; however, a clear understanding of the sedimentary types and development patterns is lacking. Here, typical lithofacies, logging facies and seismic facies types and characteristics of the YGHF are identified based on high-precision 3D seismic data combined with drilling, logging, analysis and testing data. Based on 3D seismic interpretation and attribute analysis, the origin of high-amplitude reflections is clarified, and the main types and evolution characteristics of sedimentary facies are identified. Taking gas formation upper II (IIU) as an example, the plane distribution of the delta front and bottom current channel is determined; finally, a comprehensive sedimentary model of the YGHF second member is established. This second member is a shallowly buried “bright spot” gas reservoir with weak compaction. The velocity of sandstone is slightly lower than that of mudstone, and the reflection has medium amplitude when there is no gas. The velocity of sandstone decreases considerably after gas accumulation, resulting in an increase in the wave impedance difference and high-amplitude (bright spot) reflection between sandstone and mudstone; the range of high amplitudes is consistent with that of gas-bearing traps. The distribution of gas reservoirs is obviously controlled by dome-shaped diapir structural traps, and diapir faults are channels through which natural gas from underlying Miocene source rocks can enter traps. The study area is a delta front deposit developed on a shallow sea shelf. The lithologies of the reservoir are mainly composed of very fine sand and coarse silt, and a variety of sedimentary structural types reflect a shallow sea delta environment; upward thickening funnel type, strong toothed bell type and toothed funnel type logging facies are developed. In total, 4 stages of delta front sand bodies (corresponding to progradational reflection seismic facies) derived from the Red River and Blue River in Vietnam have developed in the second member of the YGHF; these sand bodies are dated to 1.5 Ma and correspond to four gas formations. During sedimentation, many bottom current channels (corresponding to channel fill seismic facies) formed, which interacted with the superposed progradational reflections. When the provenance supply was strong in the northwest, the area was dominated by a large set of delta front deposits. In the period of relative sea level rise, surface bottom currents parallel to the coastline were dominant, and undercutting erosion was obvious, forming multistage superimposed erosion troughs. Three large bottom current channels that developed in the late sedimentary period of gas formation IIU are the most typical.  相似文献   
996.
The Subei Shoal is the largest sandy ridge in the southern Yellow Sea and is important source for nutrient loading to the sea. Here, the nutrient fluxes in the Subei Shoal associated with eddy diffusion and submarine groundwater discharge(SGD) were assessed to understand their impacts on the nutrient budget in the Yellow Sea. Based on the analysis of 223 Ra and 224 Ra in the field observation, the offshore eddy diffusivity mixing coefficient and SGD were estimated to be 2.3×108 cm  相似文献   
997.
Long-chain n-alkanols and n-alkanes in core sediments from the northern South China Sea (SCS) were measured to make a comparison during terrestrial vegetation reconstruction from ~42 ka to ~7 ka. The results showed that terrestrial vegetation record from long-chain n-alkanes matched well with previous studies in nearby cores, showing that more C4 plants developed during the Last Glacial Maximum (LGM) and C3 plants dominated in the interglacial period. However, these scenarios were not revealed by terrestrial vegetation reconstruction using long-chain n-alkanols, which showed C3 plant expansion during the LGM. The discrepancy during the interglacial period could be attributed to the aerobic degradation of functionalized long-chain n-alkanols in the oxygen-rich bottom water, resulting in poor preservation of terrestrial vegetation signals. On the other hand, the different advantages of functionalized n-alkanols and non-functional n-alkanes to record local and distal vegetation signals, respectively, may offer a potential explanation for the contradiction during the LGM when the SCS was characterized by low-oxygen deep water. Nevertheless, large variations on n-alkyl lipid compositions in C3/C4 plants could play a part in modulating sedimentary long-chain n-alkanols and n-alkanes toward different vegetation signals, thereby suggesting that caution must be taken in respect to the terrestrial vegetation reconstruction using long-chain n-alkanes and long-chain n-alkanols.  相似文献   
998.
In the northern Bay of Bengal, the existence of intense temperature inversion during winter is a widely accepted phenomenon. However, occurrences of temperature inversion during other seasons and the spatial distribution within and adjacent to the Bay of Bengal are not well understood. In this study, a higher resolution spatiotemporal variation of temperature inversion and its mechanisms are examined with mixed layer heat and salt budget analysis utilizing long-term Argo(2004 to 2020) and RAMA(2...  相似文献   
999.
Submesoscale processes in marginal seas usually have complex generating mechanisms, highly dependent on the local background flow and forcing. This numerical study investigates the spatial and seasonal differences of submesoscale activities in the upper ocean of the South China Sea (SCS) and the different dynamical regimes for sub-regions. The spatial and seasonal variations of vertical vorticity, horizontal convergence, lateral buoyancy gradient, and strain rate are analyzed to compare the submesoscale phenomenon within four sub-regions, the northern region near the Luzon Strait (R1), the middle ocean basin (R2), the western SCS (R3), and the southern SCS (R4). The results suggest that the SCS submesoscale processes are highly heterogeneous in space, with different seasonalities in each sub-region. The submesoscale activities in the northern sub-regions (R1, R2) are active in winter but weak in summer, while there appears an almost seasonal anti-phase in the western region (R3) compared to R1 and R2. Interestingly, no clear seasonality of submesoscale features is shown in the southern region (R4). Further analysis of Ertel potential vorticity reveals different generating mechanisms of submesoscale processes in different sub-regions. Correlation analyses also show the vertical extent of vertical velocity and the role of monsoon in generating submesoscale activities in the upper ocean of sub-regions. All these results suggest that the sub-regions have different regimes for submesoscale processes, e.g., Kuroshio intrusion (R1), monsoon modulation (R2), frontal effects (R3), topography wakes (R4).  相似文献   
1000.
Assessments of phytoplankton diversity in Sabah waters, North Borneo, have primarily relied on morphology-based identification, which has inherent biases and can be time-consuming. Next-Generation Sequencing (NGS) technology has been shown to be capable of overcoming several limitations of morphology-based methods. Samples were collected from the Sepanggar Bay over the course of the year 2018 in different monsoon seasons. Morphology-based identification and NGS sequencing of the V8–V9 region of the 18S LSU rDNA were used to investigate the diversity of the phytoplankton community. Microscopy and NGS showed complementary results with more diatom taxa detected by microscopy whereas NGS detected smaller and rarer taxa. The harmful algal genera in the study site comprised of Skeletonema, Margalefidinium, Pyrodinium, Takayama, and Alexandrium as detected by NGS. This study showed that that an integrative approach of both morphological and molecular techniques could provide more comprehensive information about the phytoplankton community as the approach captured quantitative variability as well as the diversity of phytoplankton species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号