首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17470篇
  免费   2455篇
  国内免费   4217篇
测绘学   1462篇
大气科学   4019篇
地球物理   1988篇
地质学   6244篇
海洋学   2199篇
天文学   5869篇
综合类   909篇
自然地理   1452篇
  2024年   59篇
  2023年   189篇
  2022年   500篇
  2021年   615篇
  2020年   644篇
  2019年   664篇
  2018年   550篇
  2017年   645篇
  2016年   628篇
  2015年   749篇
  2014年   1067篇
  2013年   1079篇
  2012年   1120篇
  2011年   1159篇
  2010年   1145篇
  2009年   1518篇
  2008年   1410篇
  2007年   1373篇
  2006年   1262篇
  2005年   1201篇
  2004年   994篇
  2003年   861篇
  2002年   721篇
  2001年   632篇
  2000年   614篇
  1999年   529篇
  1998年   451篇
  1997年   236篇
  1996年   241篇
  1995年   191篇
  1994年   230篇
  1993年   166篇
  1992年   118篇
  1991年   112篇
  1990年   86篇
  1989年   61篇
  1988年   58篇
  1987年   33篇
  1986年   35篇
  1985年   39篇
  1984年   36篇
  1983年   30篇
  1982年   22篇
  1981年   17篇
  1980年   16篇
  1979年   4篇
  1978年   9篇
  1977年   16篇
  1877年   1篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
51.
We consider sulphur depletion in dense molecular clouds, and suggest hydrated sulphuric acid, H2SO4 ·  n H2O, as a component of interstellar dust in icy mantles. We discuss the formation of hydrated sulphuric acid in collapsing clouds and its instability in heated regions in terms of the existing hot core models and observations. We also show that some features of the infrared spectrum of hydrated sulphuric acid have correspondence in the observed spectra of young stellar objects.  相似文献   
52.
53.
We present a new general scheme for calculating the structure and dynamics of radiation-pressure-driven photoionized flows. The new method goes one step beyond the Sobolev approximation. It involves a numerical solution of the radiative transfer in absorption lines, including the effects of differential expansion and line interactions such as line locking and blanketing. We also present a new scheme for calculating the radiation pressure due to trapped line photons in finite, differentially expanding flows. We compare our results for the radiation pressure force with those obtained using the Sobolev approximation and show the limitations of the latter. In particular, we demonstrate that the Sobolev method gives a poor approximation near discontinuity surfaces and its neglect of line blanketing can lead to erroneous results in high-velocity flows. We combine the newly calculated radiation pressure force with self-consistent photoionization and thermal calculations to study the dynamics and spectral features of broad absorption-line flows and highly ionized gas flows in active galactic nuclei (AGN). A comparison with Sobolev-type calculations shows that the latter overestimates the terminal velocity of the flow and, conversely, underestimates its opacity. We also show that line locking on broad emission lines can have a significant effect on the dynamics and spectral features of AGN flows.  相似文献   
54.
We present an analysis of X-ray and ultraviolet (UV) data of the dwarf nova VW Hyi that were obtained with XMM–Newton during the quiescent state. The X-ray spectrum indicates the presence of an optically thin plasma in the boundary layer that cools as it settles on to the white dwarf. The plasma has a continuous temperature distribution that is well described by a power law or a cooling flow model with a maximum temperature of 6–8 keV. We estimate from the X-ray spectrum a boundary layer luminosity of  8 × 1030 erg s-1  , which is only 20 per cent of the disc luminosity. The rate of accretion on to the white dwarf is  5 × 10−12 M yr−1  , about half of the rate in the disc. From the high-resolution X-ray spectra, we estimate that the X-ray emitting part of the boundary layer is rotating with a velocity of 540 km s−1, which is close to the rotation velocity of the white dwarf but is significantly smaller than the Keplerian velocity. We detect a 60-s quasi-periodic oscillation of the X-ray flux, which is likely to be due to the rotation of the boundary layer. The X-ray and the UV flux show strong variability on a time-scale of ∼1500 s. We find that the variability in the two bands is correlated and that the X-ray fluctuations are delayed by ∼100 s. The correlation indicates that the variable UV flux is emitted near the transition region between the disc and the boundary layer and that accretion rate fluctuations in this region are propagated to the X-ray emitting part of the boundary layer within ∼100 s. An orbital modulation of the X-ray flux suggests that the inner accretion disc is tilted with respect to the orbital plane. The elemental abundances in the boundary layer are close to their solar values.  相似文献   
55.
CARBON DYNAMICS OF WETLAND IN THE SANJIANG PLAIN   总被引:2,自引:0,他引:2  
1INTRODUCTIONWetlandsplayanimportant roleintheprocessofcar-bonstorage.Thetotalcarbonstoredindifferentkindsofwetlandsisabout15%-35%ofthetotalcarboninthegloballandsoils(POSTetal.,1982;GORHAM,1991).Inaddition,wetlandsaresignificantnaturalsources fortheatmospheric CH4 (MOORE,1994).It isestimatedthatabout110×1012gCH4 originates fromanaerobicdecompositioninthenaturalwetlands,CH4 emission fromthenaturalwetlandsis15%-30%oftheglobalCH4 emission andtheCH4 emission from thepeat land at hi…  相似文献   
56.
57.
If supermassive black holes in centres of galaxies form by merging of black hole remnants of massive Population III stars, then there should be a few black holes of mass one or two orders of magnitude smaller than that of the central ones, orbiting around the centre of a typical galaxy. These black holes constitute a weak perturbation in the gravitational potential, which can generate wave phenomena in gas within a disc close to the centre of the galaxy. Here, we show that a single orbiting black hole generates a three-arm spiral pattern in the central gaseous disc. The density excess in the spiral arms in the disc reaches values of 3–12 per cent when the orbiting black hole is about 10 times less massive than the central black hole. Therefore, the observed density pattern in gas can be used as a signature in detecting the most massive orbiting black holes.  相似文献   
58.
We study the inspiral of double black holes, with masses in the Laser Interferometer Space Antenna ( LISA ) window of detectability, orbiting inside a massive circumnuclear, rotationally supported gaseous disc. Using high-resolution smoothed particle hydrodynamics simulations, we follow the black hole dynamics in the early phase when gas-dynamical friction acts on the black holes individually, and continue our simulation until they form a close binary. We find that in the early sinking the black holes lose memory of their initial orbital eccentricity if they corotate with the gaseous disc. As a consequence, the massive black holes bind forming a binary with a low eccentricity, consistent with zero within our numerical resolution limit. The cause of circularization resides in the rotation present in the gaseous background where dynamical friction operates. Circularization may hinder gravitational waves from taking over and leading the binary to coalescence. In the case of counter-rotating orbits, the initial eccentricity (if present) does not decrease, and the black holes may bind forming an eccentric binary. When dynamical friction has subsided, for equal mass black holes and regardless their initial eccentricity, angular momentum loss, driven by the gravitational torque exerted on the binary by surrounding gas, is nevertheless observable down to the smallest scale probed (≃1 pc). In the case of unequal masses, dynamical friction remains efficient down to our resolution limit, and there is no sign of formation of any ellipsoidal gas distribution that may further harden the binary. During inspiral, gravitational capture of gas by the black holes occurs mainly along circular orbits; eccentric orbits imply high relative velocities and weak gravitational focusing. Thus, the active galactic nucleus activity may be excited during the black hole pairing process and double active nuclei may form when circularization is completed, on distance scales of tens of parsecs.  相似文献   
59.
We present a collation of the available data on the opening angles of jets in X-ray binaries, which in most cases are small (≲10°). Under the assumption of no confinement, we calculate the Lorentz factors required to produce such small opening angles via the transverse relativistic Doppler effect. The derived Lorentz factors, which are in most cases lower limits, are found to be large, with a mean >10, comparable to those estimated for active galactic nuclei (AGN) and much higher than the commonly assumed values for X-ray binaries of 2–5. Jet power constraints do not, in most cases, rule out such high Lorentz factors. The upper limits on the opening angles show no evidence for smaller Lorentz factors in the steady jets of Cygnus X-1 and GRS 1915+105. In those sources in which deceleration has been observed (notably  XTE J1550−564  and Cygnus X-3), some confinement of the jets must be occurring, and we briefly discuss possible confinement mechanisms. It is however possible that all the jets could be confined, in which case the requirement for high bulk Lorentz factors can be relaxed.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号