首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   48篇
  国内免费   44篇
测绘学   34篇
大气科学   93篇
地球物理   74篇
地质学   46篇
海洋学   51篇
天文学   2篇
综合类   8篇
自然地理   25篇
  2023年   4篇
  2022年   6篇
  2021年   3篇
  2020年   11篇
  2019年   10篇
  2018年   4篇
  2017年   9篇
  2016年   18篇
  2015年   20篇
  2014年   24篇
  2013年   25篇
  2012年   13篇
  2011年   24篇
  2010年   8篇
  2009年   16篇
  2008年   25篇
  2007年   13篇
  2006年   8篇
  2005年   12篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   9篇
  2000年   6篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1995年   16篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1986年   1篇
  1985年   1篇
排序方式: 共有333条查询结果,搜索用时 17 毫秒
81.
The stable carbon isotope ratios of nonmethane hydrocarbons (NMHC) and methyl chloride emitted from biomass burning were determined by analyzing seven whole air samples collected during different phases of the burning process as part of a laboratory study of wood burning. The average of the stable carbon isotope ratios of emitted alkanes, alkenes and aromatic compounds is identical to that of the burnt fuel; more than 50% of the values are within a range of ±1.5 of thecomposition of the burnt fuel wood. Thus for the majority of NMHC emitted from biomass burning stable carbon isotope ratio of the burnt fuel a good first order approximation for the isotopic composition of the emissions. Of the more than twenty compounds we studied, only methyl chloride and ethyne differed in stable carbon isotope ratios by more than a few per mil from the composition of the fuel. Ethyne is enriched in 13C by approximately 20–30, and most of the variability can beexplained by a dependence on flame temperature. The 13C values decreaseby 0.019 /K (±0.0053/K) with increasing temperature. Methyl chloride is highly depleted in 13C, on average by25. However the results cover a wide range of nearly 30. Specifically, in two measurements with wood from Eucalyptus (Eucalyptus delegatensis) as fuel we observed the emission of extremely light methyl chloride (–68.5and–65.5). This coincides with higher than average emission ratiosfor methyl chloride (15.5 × 10–5 and 18 ×10–5 mol CH3Cl/mol CO2). These high emission ratios are consistent with the highchlorine content of the burnt fuel, although, due to the limited number of measurements, it would be premature to generalize these findings. The limited number of observations also prevents any conclusion on a systematic dependence between chlorine content of the fuel, emission ratios and stable carbon isotope ratio of methyl chloride emissions. However, our results show that a detailed understanding of the emissions of methyl chloride from chloride rich fuels is important for understanding its global budget. It is also evident that the usefulness of stable carbon isotope ratios to constrain the global budget of methyl chloride will be complicated by the very large variability of the stable carbon isotope ratio of biomass burning emissions. Nevertheless, ultimately the large fractionation may provide additional constraints for the contribution of biomass burning emissions to the atmospheric budget of methyl chloride.  相似文献   
82.
To systematically explain relations between light hydrocarbons, CO, and CO2 concentrations/emissions of biomassburning, we measured concentrations/emissions of carbon gases – CO,CO2, light hydrocarbons (CH4, C2H6,C2H4, C2H2, C3H8, C3H6,n-C4H10, i-C4H10, n-C5H12,i-C5H12), and THC (total hydrocarbon) – in the burning of dead plant material, mainly Imperata grass, byclosed-chamber experiments and by time-series analyses of gas concentrations in combustion plumes in relatively efficient and inefficient combustion situations. Concentrations of hydrocarbons measured were well correlated to [CO] although [C2H2] was exceptionally well correlated to[CO2]. The phase diagrams (relation between [CO]/ [CO2] and [hydrocarbon]/ [CO2]) obtained by the time-seriesexperiments well illustrated the variation in the overall emission rates of the closed-chamber experiments. The higher rates of decrease in hydrocarbon concentration with increasing carbon number in the efficient case compared with the inefficient case probably reflected the rate of oxidation and the amount of radicals. The overall concentrations (or emissions) of C2H4 and C3H6 were higher thanthose of C2H6 and C3H8, suggesting a linkage to mechanisms in whichthe predominant path of hydrocarbon oxidation is through the degradation of alkyl radicals, which can be immediately converted into or formed from alkenes. For C3 and C4 species, normal-chain species hadhigher emissions than iso-chain species under lower combustion efficiency. This may be attributable to the presence of tertiary C–H bonds in iso-species,which show more reactivity in the abstraction of H than secondary C–H bonds unless the carbon number is large.  相似文献   
83.
Tropical and subtropical areas comprise about 23% of the total land area (960 Mha) of China. Of this, about 40% is in forests, 20% is in cropland and another 20% is wasteland. Preliminary estimates of overall sources and sinks of carbon dioxide indicate that current agricultural activities probably constitute a net sink. We estimate that improved agricultural management and wasteland reclamation have the potential to sequester an additional 1.9 Tg CO2-C y-1 or more, largely through increasing productivity and C inputs to soils and conversion of wasteland to agricultural production. We estimate that current forestry activities in the region could sequester about 7 Tg CO2-C y-1. There is also a large potential for increased C sequestration and fossil fuel offsets by conversion of wasteland to fuel wood plantations, on the order of 30-70 Tg C y-1. A number of practices for increasing mitigation of CO2 emissions in the forestry and agricultural sectors are presented.  相似文献   
84.
 Extensive irrigation by the effluents released from a paper mill near Nanjangud have led to the accumulation of heavy metals in the soil and different parts of the paddy crops. In this paper, the physicochemical characteristics of paper mill effluents and the accumulation of heavy metals (Cu, Zn, Pb, Co, Cd, Cr, and Ni) in the soil and different parts (root, leaf, and seed) of the paddy crops growing in the irrigated area are described and compared with the soil and paddy crops irrigated by natural waters (unpolluted). Chemical and biological oxygen demands of wastewater were found to be 437 and 1070 ppm respectively, which are beyond the tolerance limits set by Indian standards. The total dissolved and suspended solids are 1754 and 900 ppm respectively. The concentration of heavy metals (except Zn) in the seeds is remarkably less than that in the roots and leaves of the paddy crops. The heavy metal uptake by plants shows the greatest accumulation of Cu, Cr, Co, and Pb in the roots; Cd and Ni in the leaves; and Zn in the seeds of rice. The heavy metal content of the soil and their total uptake by paddy roots has the relation: Pb>Zn>Cu>Cd and Pb>Cu>Zn>Cd. Survival of paddy crops irrigated by polluted waters indicates tolerance to toxic heavy metals. In conclusion, since in many tropical countries the common diet of people is rice, the accumulation of toxic heavy metals in rice may lead to health disorders. Received: 18 July 1995 / Accepted: 24 February 1997  相似文献   
85.
Although extensive areas of forests and grasslands are burned in the tropics, relatively little scientific attention has been focused on this phenomenon. In order to determine the land area burned and estimate the charcoal (elemental or graphitic carbon) produced, I monitored agricultural burning in a 1145 km2 area in central Panama during the 1981 dry season. Over 10% of the land surface was burned in that year. Charcoal concentrations in the aerosol were also measured and reached values of 3.1 gC/m3 during the peak in burning. Off-peak values of aerosol charcoal are less than 1 gC/m3. The high charcoal concentration reflects the massive amounts of vegetational burning occurring in the area.The charcoal advected by the air mass flowing over the area has been estimated using a box model. Assuming an average aerosol concentration of charcoal of 1 gC/m3 for a three-month burning period, a 2 km atmospheric mixed layer, a 14 km/h wind velocity to the south, and a 150 km wide zone across the western Gulf of Panama watershed, I estimate that, during the dry season, 9×109 g charcoal are mobilized by the troposphere. If 4.1×1012 g phytomass are annually burned in this region, then the charcoal emission factor to the troposphere is 2.2×10–3.  相似文献   
86.
Field measurement programs in Brazil during the dry seasons in August and September 1979 and 1980 have demonstrated the large importance of the continental tropics in global air chemistry. Many important trace gases are produced in large amounts over the continents. During the dry season, much biomass burning takes place, especially in the cerrado regions, leading to a substantial emission of air pollutants, such as CO, NO x , N2O, CH4 and other hydrocarbons. Ozone concentrations are enhanced due to photochemical reactions. The large biogenic organic emissions from tropical forests play an important role in the photochemistry of the atmosphere and explain why CO is present in such high concentrations in the boundary layer of the tropical forest. Carbon monoxide production may represent more than 3% of the net primary productivity of the tropical forests. Ozone concentrations in the boundary layer of the tropical forests indicate strong removal processes. Due to atmospheric supply of NO x by lightning, there is probably a large production of O3 in the free troposphere over the Amazon tropical forests. This is transported to the marine-free troposphere and to the forest boundary layer.  相似文献   
87.
燃煤过程中氯氟烃的产生和释放   总被引:6,自引:0,他引:6  
用静态去除燃煤产生的CO2气体,经冷阱两步浓缩,气相色谱-质谱对燃煤产生的烟气样品进行了检测,近100种物质被检测出,其中,二氟二氯甲烷与当地大气背景相比呈显著异常.随着燃烧温度的变化,二氟二氯甲烷具规律性变化,当燃炉温度达到400℃左右时,氟里昂释放达到峰值.燃煤过程中,二氟二氯甲烷含量变化表现出与氯甲烷有明显的正相关关系,表明氟里昂的生成同氯甲烷有着密切的内在联系.除了氟里昂外,燃煤过程中产生的氯甲烷对大气环境的影响也不容忽视.  相似文献   
88.
以大豆“中黄-14”为试验材料, 利用OTC-1型农田开顶式气室, 首次模拟研究单独CO2和O3浓度倍增及其交互作用对大豆生物量、产量及其构成因子、同化产物分配形式和收获指数的影响。与未通CO2和O3的处理相比, 单独CO2浓度倍增对生物量、产量、荚果串数、荚数、籽粒数、籽粒重具有正效应, O3为明显的负效应, 通气时段越长效果越明显; 持续的CO2浓度和O3浓度倍增交互作用表现为CO2的影响大于O3; CO2和O3交互作用逐渐达到浓度倍增的处理, 由于O3剂量逐渐累积和阶段性增加, 对大豆刺激逐渐增强, 最终O3的负效应与CO2的正效应相近。单独O3浓度倍增抑制光合产物向根和籽粒的输送, 向叶茎的输送明显增强, 使根冠比 (RSR)、子粒与茎杆比 (GCR) 明显下降, 长期作用可使大豆收获指数 (HI) 减小, 叶重比 (LWR) 显著增加, 且随通气时间的延长影响增大; CO2浓度倍增及其交互作用对RSR、LWR、GCR和HI影响相对较小, 仅在±10%左右。  相似文献   
89.
通过内蒙古准格尔黑岱沟矿富镓(Ga)煤样在不同温度段的灰化试验,测定了煤在不同温度下的烧失量,研究了Ga在灰化过程中含量的变化及其迁移转化规律。结果表明,灰化过程中供氧不足时,镓可能转化为易挥发的低价化合物而挥发;灰化温度在300~500℃间时,煤样的烧失量与温度成正相关关系,镓的损失量由高变低;灰化温度高于500℃时,煤样烧失量随温度升高增长缓慢,镓的损失量逐渐增大。  相似文献   
90.
We characterize the agreement and disagreement of four publically available burned products (Fire CCI, Copernicus Burnt Area, MODIS MCD45A1, and MODIS MCD64A1) at a finer spatial and temporal scale than previous assessments using a grid of three-dimensional cells defined both in space and in time. Our analysis, conducted using seven years of data (2005–2011), shows that estimates of burned area vary greatly between products in terms of total area burned, the location of burning, and the timing of the burning. We use regional and monthly units for analysis to provide insight into the variation between products that can be lost when considering products yearly and/or globally. Comparison with independent, contemporaneous MODIS active fire observations provides one indication of which products most reasonably capture the burning regime. Our results have implications for the use of global burned area products in fire ecology, management and emissions applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号