首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   4篇
大气科学   1篇
地球物理   45篇
地质学   3篇
海洋学   9篇
综合类   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   7篇
  2009年   6篇
  2008年   4篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有59条查询结果,搜索用时 23 毫秒
21.
Fish species richness is an important indicator of river ecological condition but it is particularly difficult to estimate in large unwadeable rapidly flowing rivers. Intensive multi-gear sampling is time consuming, logistically complex and expensive. However, insufficient sampling effort underestimates species richness and yields inaccurate data about the ecological condition of river sites. We raft-electrofished 10 large river sites in 10 different ecoregions and six western USA states for distances equal to 300 times their mean wetted channel widths (MCWs) to estimate the effort needed to approach asymptotes in fish species richness. To collect 90% of the observed fish species at the sites, we found that an average of 150 MCWs (ranging 80–210 MCWs) were needed, with the number of MCWs increasing in rivers with a higher proportion of spatially rare species. Frequently, the second or third additional 100 MCWs produced only one or two additional singletons or doubletons (species occurring only once or twice at a site). Before initiating sampling programs for estimating species richness, we recommend assessing sampling effort, particularly if rare or uncommon species are expected or desired.  相似文献   
22.
Harbours can be considered as model environments for developing and validating field monitoring procedures and to investigate mechanistic relationships between different biological responses. In this study several biomarkers were investigated in marine mussels caged for 4 weeks (June–July 2001) into an industrialized harbour of NW Italy. Organisms were collected at different time-intervals to better characterize the sensitivity, temporal variations and interactions of analysed responses. Besides single antioxidants the total oxyradical scavenging capacity (TOSC) assay was used to analyse the capability of the whole antioxidant system to neutralize specific forms of radicals: these data were further integrated by measurement of DNA integrity, oxidized bases and the impairment of lysosomal membrane stability in haemocytes. Results showed a biphasic trend for single antioxidants and TOSC, with an increase during the first 2 weeks of exposure to the polluted site followed by a progressive decrease up to a severe depletion in the final part of the experiment.  相似文献   
23.
The effects of different substratum typologies on Posidonia oceanica growth and morphology were estimated in four Sicilian meadows using Generalized and Linear Mixed Models combined with retrodating and biometric analyses. Substratum exerted a multiple effect, resulting in different biometric features for P. oceanica shoots settled on rock from those growing on sand and matte. On rock, values for growth rate, leaf length and shoot surface were lower than those on other substrata, with 42%, 23% and 32% the highest degree of difference respectively. The present study may have interesting methodological consequences for the comprehensive understanding of the causative variables potentially affecting meadows features and their health status. The importance of substratum in the prediction of likely biometry changes in P. oceanica meadows, means that knowledge of substratum type should receive due attention in the future to derive reliable estimates of meadow status.  相似文献   
24.
The amphipod crustacean Talitrus saltator is an established, easily accessible, biomonitor of trace metal bioavailabilities in coastal waters. We have carried out a geographically widespread collection of T. saltator from European shores, stretching from the north-west Atlantic through the Baltic to the Mediterranean. A primary aim of the work was to establish a database of accumulated trace metal concentrations (Cd, Cr, Cu, Fe, Mn and Zn) in this biomonitor. Statistical analysis has shown significant geographical differences in the bioavailabilities of all the metals, the most distinct being copper, iron and manganese. It has proved possible to identify unusually high accumulated concentrations of Cd, Cr, Cu, Fe, Mn and Zn in this biomonitor, indicative of high metal bioavailability at a particular site. These may serve as reference points for future biomonitoring programmes seeking to identify metal contamination in coastal waters.  相似文献   
25.
The natural abundance of 15N (δ15N) has been widely used to detect anthropogenically derived N loads in environmental impact studies. The present study involved retrospective analysis of subsamples of Fucus vesiculosus L. collected during a period of three years (2008–2010) from two sites: a control site, within a coastal reference area, and an area affected by the effluents of a marine land-based fish farm. The isotopic signal in different subsamples of the macroalgae thalli (tissue that has grown during the same period) varied depending on the age of the tissue. Moreover, the isotopic signal decreased significantly with the age of the frond to within a certain range. The δ15N of F. vesiculosus is temporally unstable; therefore, measurement of the δ15N of macroalgal tissues does not allow reliable retrospective biomonitoring of environmental pollution. Further knowledge about the growth and other biological aspects of this species is required.  相似文献   
26.
大型底栖动物在水生态系统健康评价中的应用   总被引:1,自引:0,他引:1  
大型底栖动物是维系水生态系统结构和功能的重要组成部分,也是影响水生态系统健康与功能的重要水生生物指标。随着中国对基于流域完整性水生态管理的日益重视,水生态系统健康的研究也更加深入,因而底栖动物的研究在深度和广度上均有所提高。概述了近年来国内外底栖动物的主要研究方向、影响因素及其分析方法。结果表明:在研究方向上,由于底栖动物对水生态系统变化的响应具有明显的空间尺度效应,因而以不同尺度空间上的自然环境、生境条件和水质等因子为分界,分析其对底栖动物多样性及其群落结构的重要影响。综合分析各种影响因素,流域内人类活动所造成的水环境因子变化或生境受损可直接影响底栖动物物种组成和种群特征。对底栖动物的研究方法可分为模型分析法和生物指数评价法两类,在应用中可侧重不同模型和指数的特点进行针对性选择。  相似文献   
27.
The majority of usable freshwater is stored as groundwater in the subsurface. Pristine groundwater ecosystems are characterised as oligotrophic environments which facilitate low energy yield, activity, growth, and reproduction for numerous and highly adapted organisms living in these environments. Degradation of groundwater quality and quantity are hence reflected in the structural changes of groundwater species communities. Despite an increasing awareness of this problem, current assessment methods for groundwater ecosystems are solely based on the analysis of abiotic parameters. However, this approach is insufficient to detect changes in microbial communities and their related metabolic functions. In recent years, the development of culture-independent molecular techniques to analyse microbes has vastly improved our knowledge concerning the diversity and composition of microbial communities in various environments. High-throughput sequencing (HTS) techniques enable the detection of single bacterial species in a sample and thus provide a high resolution of the composition and diversity of microbial communities in various environments. Furthermore, the taxonomic information obtained allows for the inference of metabolic functions of a given community. However, since the method is labour intensive and costly it is not necessarily the method of choice for analysing numerous samples. By comparison, DNA-fingerprinting is a less elaborate and inexpensive method that is able to detect changes in microbial communities, although identification of species present in a community is not possible, and therefore represents a valuable supplement to HTS. The present paper intends to render information about the applicability of this method as a monitoring tool against this background, by directly comparing results of DNA-fingerprinting with the results of HTS. Despite the fact that the analysis of bacterial communities using HTS captured significantly higher diversity estimates in our study, results of both methods were positively associated. And even though HTS produced more accurate and detailed results regarding composition and diversity of bacterial communities, patterns of community composition captured by DNA-fingerprinting were similar in comparison to HTS. We thus can suggest DNA-fingerprinting as a cost efficient alternative for community assessment and diversity estimation, specifically as a promising methodological approach in environmental assays.  相似文献   
28.
以卤虫(Artemia)龄期和体长为指标,探讨了卤虫幼体在海洋油田生产水中生物毒性监测的应用,评价了油田生产水的生物毒性,建立了以卤虫为材料的油田生产水急性生物毒性试验方法.结果表明1)5个油田生产水样品的生物毒性不一样,IC50分别为1.5%,12%,21%,>100%,>100%.样品I、样品Ⅱ、样品Ⅲ可致卤虫不同程度的发育异常,主要表现在生长值较对照组小,发育龄期小于对照组以及分节时体节不能正常分叶.样品Ⅳ和样品V则对卤虫发育没有明显影响.2)卤虫是海洋污染物生物毒性监测的适宜物种,卤虫发育龄期适宜作为油田生产水生物毒性的监测指标.有必要对油田生产水的生物毒性效应进行监测,以合理评估生产水对海洋环境的影响.  相似文献   
29.
The present study aimed at characterizing the heavy metal resistance and assessing the resistance pattern to multiple heavy metals (300 mmol L?1) by Palk Bay sediment bacteria. From 46 isolates, 24 isolates showed resistance to more than eight heavy metals. Among the 24 isolates S8-06 (Bacillus arsenicus), S8-10 (Bacillus pumilus), S8-14 (B. arsenicus), S6-01 (Bacillus indicus), S6-04 (Bacillus clausii), SS-06 (Planococcus maritimus) and SS-08 (Staphylococcus pasteuri) exhibited high resistance against arsenic, mercury, cobalt, cadmium, lead and selenium. Plasmid curing confirmed that the heavy metal resistance in S8-10 is chromosomal borne. Upon treatment with the heavy metals, the strain S8-10 showed many morphological and physiological changes as shown by SEM, FTIR and AAS analysis. S8-10 removed 47% of cadmium and 96% of lead from the growth medium. The study suggests that sediment bacteria can be biological indicators of heavy metal contamination.  相似文献   
30.
The anti-microbial agent triclosan (TCS), and its derivative methyl-triclosan (Me-TCS), are discharged with treated effluents from wastewater treatment plants to receiving environments. We investigated the bioconcentration of TCS and Me-TCS in mussels (Mytilus galloprovincialis) exposed to TCS (100 ng L−1) for 30 days in seawater aquaria (19 ± 2 °C) with fresh phytoplankton as a food source. Bioconcentration increased with time reaching a steady-state around 24–30 days. The bioconcentration factor (log BCF) for TCS were 2.81 L kg−1 (dry weight) and 4.13 L kg−1, when lipid normalised concentrations were used. Mussels were also deployed in cages at four marine locations receiving effluents from WWTPs. The mean (±SD) TCS and Me-TCS concentrations for mussels from these sites were 9.87 (±1.34) and 6.99 (±2.44) μg kg−1. The study showed that mussels can be a useful tool for monitoring pollution of TCS and Me-TCS in marine and estuarine environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号