首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   64篇
  国内免费   68篇
测绘学   24篇
大气科学   159篇
地球物理   68篇
地质学   16篇
海洋学   4篇
天文学   1篇
综合类   17篇
自然地理   25篇
  2024年   3篇
  2023年   4篇
  2022年   13篇
  2021年   20篇
  2020年   14篇
  2019年   19篇
  2018年   20篇
  2017年   26篇
  2016年   24篇
  2015年   16篇
  2014年   19篇
  2013年   42篇
  2012年   18篇
  2011年   23篇
  2010年   8篇
  2009年   11篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
排序方式: 共有314条查询结果,搜索用时 343 毫秒
91.
华东地区极端降水动力降尺度模拟及未来预估   总被引:1,自引:1,他引:0  
利用CMIP5(Coupled Model Intercomparison Project Phase 5)数据集中的全球模式IPSL-CM5A-LR及其嵌套的区域气候模式WRF(Weather Research and Forecasting),分别评估了模式对1981~2000中国华东区域极端降水指标的模拟能力,并讨论了RCP8.5排放情景下21世纪中期(2041~2060年)中国华东极端降水指标的变化特征。相比驱动场全球气候模式,WRF模式更好地再现了各个极端指数空间分布及各子区域降水年周期变化。在模拟区域气候特点方面,WRF模拟结果有所改进,并在弥补全球模式对小雨日过多模拟的缺陷起到了明显的作用。21世纪中期,华东区域的降水将呈现明显的极端化趋势。WRF模拟结果显示年总降雨量、年大雨日数、平均日降雨强度在华东大部分区域的增幅在20%以上;年极端降雨天数、连续5 d最大降水量的增幅在华东北部部分区域分别超过了50%和35%,同时最长续干旱日在华东区域全面增加;且变化显著的格点主要位于增加幅度较大的区域。未来华东区域会出现强降水事件和干旱事件同时增加的情况,降水呈现明显的极端化趋势,且华东北部极端化强于华东南部。  相似文献   
92.
中国降水未来情景的降尺度模拟   总被引:1,自引:0,他引:1  
范泽孟  岳天祥  陈传法  孙晓芳 《地理研究》2012,31(12):2283-2291
基于长时间序列(1964~2007年)的全国降水观测数据, 结合经纬度数据以及DEM、 坡向、坡度等系列地形特征数据, 利用空间统计方法, 在构建年平均降水降尺度模型的基础 上, 运用高精度曲面建模(HASM)方法对经过降尺度分析的HadCM3的A1Fi、A2a和B2a 三种情景T1~T4时段的全国未来平均降水进行高精度曲面模拟。模拟结果显示, 在T1~T4 时段内, A1Fi、A2a和B2a三种情景的全国平均降水均呈持续增加趋势。其中, 平均降水在 A1Fi情景中增加速度最快, B2a情景中增加速度最慢;A1Fi和A2a两种情景的平均降水均呈 加速增加趋势, 而B2a情景的平均降水则呈减速增加趋势。模拟结果表明, 本文构建的降尺 度模拟方法可以有效地实现IPCC GCM 的低分辨率的降水情景数据降尺度转换成高分辨率的 降水数据。  相似文献   
93.
Local in its causes and global in its impacts, climate change still poses an unresolved challenge for scientists, politicians, entrepreneurs, and citizens. Climate change research is largely global in focus, aims at enhanced understanding, and is driven by experts, all of which seem to be insufficient to anchor climate change action in regional and local contexts. We present results from a participatory scenario study conducted in collaboration with the municipality of Delta in SW British Columbia, Canada. This study applies a participatory capacity building approach for climate change action at the local level where the sources of emissions and the mechanisms of adaptation reside and where climate change is meaningful to decision-makers and stakeholders alike. The multi-scale scenario approach consists of synthesizing global climate change scenarios, downscaling them to the regional and local level, and finally visualizing alternative climate scenarios out to 2100 in 3D views of familiar, local places. We critically discuss the scenarios produced and the strengths and weaknesses of the approach applied.  相似文献   
94.
哈萨克斯坦是世界最大的内陆国家,拥有典型的大陆性气候和多样的地理环境及生态系统,同时哈萨克斯坦的自然环境和人类社会对于气候变化这一全球性问题是敏感的、脆弱的,需要运用科学的研究方法应对气候变化的挑战。通常,区域或局地尺度的气候变化影响研究需要对气候模式输出或再分析资料进行降尺度以获得更细分辨率的气候资料。近年来,大量验证统计降尺度方法在各个地区能力的研究见诸文献,然而在哈萨克斯坦地区验证统计降尺度方法的研究非常少见。本文使用了岭回归的方法对哈萨克斯坦地区11个气象站点1960~2009年的月平均气温进行了统计降尺度研究。结果显示,使用前30年数据和岭回归模型建立大尺度预报因子和观测资料的统计关系可以较好地预测后20年的月平均气温,预测能力在各站各月均有不同程度的差异,地形复杂的站点预测效果较差,夏季预测结果好于冬季;此外,将哈萨克斯坦地区平均来看则与观测数据相吻合。  相似文献   
95.
Statistical downscaling of 14 coupled atmosphere-ocean general circulation models (AOGCM) is presented to assess potential changes of the 10 m wind speeds in France. First, a statistical downscaling method is introduced to estimate daily mean 10 m wind speed at specific sites using general circulation model output. Daily 850 hPa wind field has been selected as the large scale circulation predictor. The method is based on a classification of the daily wind fields into a few synoptic weather types and multiple linear regressions. Years are divided into an extended winter season from October to March and an extended summer season from April to September, and the procedure is conducted separately for each season. ERA40 reanalysis and observed station data have been used to build and validate the downscaling algorithm over France for the period 1974–2002. The method is then applied to 14 AOGCMs of the coupled model intercomparison project phase 3 (CMIP3) multi-model dataset. Three time periods are focused on: a historical period (1971–2000) from the climate of the twentieth century experiment and two climate projection periods (2046–2065 and 2081–2100) from the IPCC SRES A1B experiment. Evolution of the 10 m wind speed in France and associated uncertainties are discussed. Significant changes are depicted, in particular a decrease of the wind speed in the Mediterranean area. Sources of those changes are investigated by quantifying the effects of changes in the weather type occurrences, and modifications of the distribution of the days within the weather types.  相似文献   
96.
General circulation models (GCMs) are often used in assessing the impact of climate change at global and continental scales. However, the climatic factors simulated by GCMs are inconsistent at comparatively smaller scales, such as individual river basins. In this study, a statistical downscaling approach based on the Smooth Support Vector Machine (SSVM) method was constructed to predict daily precipitation of the changed climate in the Hanjiang Basin. NCEP/NCAR reanalysis data were used to establish the sta...  相似文献   
97.
In most of Europe, an increase in average annual surface temperature of 0·8 °C is observed, and a further increase is projected. Precipitation tends to increase in northern Europe and decrease in southern Europe, with variable trends in central Europe. The climate scenarios for Germany suggest an increase in precipitation in western Germany and a decrease in eastern Germany, and a shift of precipitation from summer to winter. When investigating the effects of climate change, impacts on water resources are among the main concerns. In this study, the first German‐wide impact assessment of water fluxes dynamics under climate change is presented in a spatially and temporally distributed manner using the state‐of‐the‐art regional climate model, Statistical Regional (STAR) model and the semi‐distributed process‐based eco‐hydrological model, soil and water integrated model (SWIM). All large river basins in Germany (lower Rhine, upper Danube, Elbe, Weser and Ems) are included. A special focus of the study was on data availability, homogeneity of data sets, related uncertainty propagation in the model results and scenario‐related uncertainty. After the model calibration and validation (efficiency from 0·6 to 0·9 in 80% of cases) the water flow components were simulated at the hydrotope level, and the spatial distributions were compared with those in the Hydrological Atlas of Germany. The actual evapotransipration is likely to increase in most parts of Germany, while total runoff generation may decrease in south and east regions. The results for the second scenario period 2051–2060 show that water discharge in all six rivers would be 8–30% lower in summer and autumn compared with the reference period, and the strongest decline is expected for the Saale, Danube and Neckar. Higher winter flow is expected in all of these rivers, and the increase is most significant for the Ems (about 18%). However, the uncertainty of impacts, especially in winter and for high water flows, remains high. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
98.
ABSTRACT

The impact of climate change on hydrology and water salinity of a valuable coastal wetland (Anzali) in northern Iran is assessed using daily precipitation and temperature data from 19 models of Coupled Model Inter-comparison Project Phase 5. The daily data are transiently downscaled using the Long Ashton Research Station Weather Generator to three climatic stations. The temperature is projected to increase by +1.6, +1.9 and +2.7°C and precipitation to decrease by 10.4%, 12.8% and 12.2% under representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5 and RCP8.5, respectively. The wetland hydrology and water salinity are assessed using the water balance approach and mixing equation, respectively. The upstream river flow modelled by the Soil and Water Assessment Tool is projected to reduce by up to 18%, leading to reductions in wetland volume (154 × 106 m3), area (57.47 km2) and depth (2.77 m) by 34%, 21.1% and 20.2%, respectively, under climate change, while the mean annual total dissolved solids (1675 mg/L) would increase by 49%. The reduced volume and raised salinity may affect the wetland ecology.  相似文献   
99.
The third and fourth statistical moments, that is, skewness and kurtosis, are compared for daily maximum temperature in summer and daily minimum temperature in winter between observations, outputs of two global climate models, four versions of statistical downscaling, and weather generator. The comparison is performed at six stations in central Europe. None of the simulation models can be considered as superior to the others. Causes of a good correspondence with and differences from observations are identified e.g. in the treatment of physics in the models, imperfections in physical parameterizations, or a linear transfer of properties from predictors onto predictands in statistical downscaling.  相似文献   
100.
Seasonal climate forecasts are one of the most promising tools for providing early warnings for natural hazards such as floods and droughts. Using two case studies, this paper documents the skill of a regional climate model in the seasonal forecasting of below normal rainfall in southern China during the rainy seasons of July–August–September 2003 and April–May–June 2004. The regional model is based on the Regional Spectral Model of the National Centers for Environmental Prediction of the United States. It is the first time that the model has been applied to a region dominated by the East Asian Monsoon. The article shows that the regional climate model, when being forced by reasonably good forecasts from a global model, can generate useful seasonal rainfall forecasts for the region, where it is dominated by the East Asia monsoon. The spatial details of the dry conditions obtained from the regional climate model forecast are also found to be comparable with the observed distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号