首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23155篇
  免费   4183篇
  国内免费   6116篇
测绘学   4287篇
大气科学   4540篇
地球物理   5535篇
地质学   10089篇
海洋学   3358篇
天文学   231篇
综合类   1938篇
自然地理   3476篇
  2024年   91篇
  2023年   274篇
  2022年   801篇
  2021年   950篇
  2020年   1109篇
  2019年   1293篇
  2018年   1075篇
  2017年   1236篇
  2016年   1297篇
  2015年   1441篇
  2014年   1515篇
  2013年   1738篇
  2012年   1602篇
  2011年   1658篇
  2010年   1305篇
  2009年   1453篇
  2008年   1483篇
  2007年   1568篇
  2006年   1494篇
  2005年   1320篇
  2004年   1169篇
  2003年   1007篇
  2002年   921篇
  2001年   778篇
  2000年   721篇
  1999年   649篇
  1998年   593篇
  1997年   521篇
  1996年   457篇
  1995年   422篇
  1994年   376篇
  1993年   314篇
  1992年   192篇
  1991年   167篇
  1990年   113篇
  1989年   83篇
  1988年   84篇
  1987年   51篇
  1986年   27篇
  1985年   29篇
  1984年   15篇
  1982年   9篇
  1981年   7篇
  1980年   9篇
  1979年   9篇
  1978年   9篇
  1977年   3篇
  1976年   3篇
  1972年   1篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
841.
A simple grid cell‐based distributed hydrologic model was developed to provide spatial information on hydrologic components for determining hydrologically based critical source areas. The model represents the critical process (soil moisture variation) to run‐off generation accounting for both local and global water balance. In this way, it simulates both infiltration excess run‐off and saturation excess run‐off. The model was tested by multisite and multivariable evaluation on the 50‐km2 Little River Experimental Watershed I in Georgia, U.S. and 2 smaller nested subwatersheds. Water balance, hydrograph, and soil moisture were simulated and compared to observed data. For streamflow calibration, the daily Nash‐Sutcliffe coefficient was 0.78 at the watershed outlet and 0.56 and 0.75 at the 2 nested subwatersheds. For the validation period, the Nash‐Sutcliffe coefficients were 0.79 at the watershed outlet and 0.85 and 0.83 at the 2 subwatersheds. The per cent bias was less than 15% for all sites. For soil moisture, the model also predicted the rising and declining trends at 4 of the 5 measurement sites. The spatial distribution of surface run‐off simulated by the model was mainly controlled by local characteristics (precipitation, soil properties, and land cover) on dry days and by global watershed characteristics (relative position within the watershed and hydrologic connectivity) on wet days when saturation excess run‐off was simulated. The spatial details of run‐off generation and travel time along flow paths provided by the model are helpful for watershed managers to further identify critical source areas of non‐point source pollution and develop best management practices.  相似文献   
842.
Identifying the role of the two main driving factors—climate change and human interventions—in influencing runoff processes is essential for sustainable water resources management. For this purpose, runoff regime change detection methods were used to divide the available hydroclimatic variables into a baseline and a disturbed period. We applied hydrological modelling and the climate elasticity of runoff method to determine the contribution of climate change and human interventions to changes in runoff. The hydrological model, SWAT, was calibrated during the baseline period and used to simulate the naturalized runoff pattern for the disturbed period. Significant changes in runoff in the study watershed were detected from 1982, suggesting that human interventions play a dominant role in influencing runoff. The combined effects of climate change and human interventions resulted in a 41.3 mm (23.9%) decrease in runoff during the disturbed period, contributing about 40% and 60% to the total runoff change, respectively. Furthermore, analysis of changes in land cover dynamics in the watershed over the past four decades supported these changes in runoff. Contrary to other decades, the discrepancy between naturalized and observed runoff was small in the 2010s, likely due to increased baseflow as a result of storage and/or release of excess water during the dry season. This study contributes to our understanding of how climate change and human interventions affect hydrological responses of watersheds, which is important for future sustainable water management and drought adaptation.  相似文献   
843.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   
844.
Spatial information on soil properties is an important input to hydrological models. In current hydrological modelling practices, soil property information is often derived from soil category maps by the linking method in which a representative soil property value is linked to each soil polygon. Limited by the area‐class nature of soil category maps, the derived soil property variation is discontinuous and less detailed than high resolution digital terrain or remote sensing data. This research proposed dmSoil, a data‐mining‐based approach to derive continuous and spatially detailed soil property information from soil category maps. First, the soil–environment relationships are extracted through data mining of a soil map. The similarity of the soil at each location to different soil types in the soil map is then estimated using the mined relationships. Prediction of soil property values at each location is made by combining the similarities of the soil at that location to different soil types and the representative soil property values of these soil types. The new approach was applied in the Raffelson Watershed and Pleasant Valley in the Driftless Area of Wisconsin, United States to map soil A horizon texture (in both areas) and depth to soil C horizon (in Pleasant Valley). The property maps from the dmSoil approach capture the spatial gradation and details of soil properties better than those from the linking method. The new approach also shows consistent accuracy improvement at validation points. In addition to the improved performances, the inputs for the dmSoil approach are easy to prepare, and the approach itself is simple to deploy. It provides an effective way to derive better soil property information from soil category maps for hydrological modelling. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
845.
A three‐dimensional constitutive model for joints is described that incorporates nonlinear elasticity based on volumetric elastic strain, and plasticity for both compaction and shear with emphasis on compaction. The formulation is general in the sense that alternative specific functional forms and evolution equations can be easily incorporated. A corresponding numerical structure based on finite elements is provided so that a joint width can vary from a fraction of an element size to a width that occupies several elements. The latter case is particularly appropriate for modeling a fault, which is considered simply to be a joint with large width. For small joint widths, the requisite equilibrium and kinematic requirements within an element are satisfied numerically. The result is that if the constitutive equation for either the joint or the rock is changed, the numerical framework remains unchanged. A unique aspect of the general formulation is the capability to handle either pre‐existing gaps or the formation of gaps. Representative stress–strain plots are given to illustrate both the features of the model and the effects of changes in values of material parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
846.
Slopes consisting of saturated sand have recently moved down-slope tens or hundreds of meters under the action of earthquakes. This paper presents a simplified but accurate method predicting the triggering and displacement of such landslides. For this purpose, a simplified constitutive model simulating soil response of saturated sands along slip surfaces is proposed and validated. Then, this constitutive model is coupled with the multi-block sliding system model to predict the triggering and displacement of such slides. The multi-block model considers a general mass sliding on a trajectory which consists of n linear segments. The steps needed to apply this method are described in detail. The method was applied successfully to predict the triggering, the motion and the final configuration of the well-documented (a) Higashi Takezawa, (b) Donghekou and (c) Nikawa earthquake-induced slides.  相似文献   
847.
848.
The microstructure of rock was numerically reproduced by a polygonal grain‐based model, and its mechanical behavior was examined by performing the uniaxial compression test and Brazilian tests via the Universal Distinct Element Code. The numerical results of the model demonstrated good agreement with the experimental results obtained with rock specimens in terms of the stress–strain behavior, strength characteristics, and brittle fracture phenomenon. An encouraging result is that the grain‐based model‐Universal Distinct Element Code model can reproduce a low ratio of tensile to compressive strength of 1/20 to 1/10 without the need for an additional process. This finding is ascribed to the fact that the geometrical features of polygons can effectively capture the effects of angularity, finite rotation, and interlocking of grains that exist in reality. A numerical methodology to monitor the evolution of micro‐cracks was developed, which enabled us to examine the progressive process of the failure and distinguish the contribution of tensile cracking to the process from that of shear cracking. From the observations of the micro‐cracking process in reference to the stress–strain relation, crack initiation stress, and crack damage stress, it can be concluded that the failure process of the model closely resembles the microscopic observations of rock. We also carried out a parametric study to examine the relationships between the microscopic properties and the macroscopic behavior of the model. Depending on the micro‐properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics, the evolution of micro‐cracks, and the post‐peak behavior. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
849.
We propose a numerical method that couples a cohesive zone model (CZM) and a finite element‐based continuum damage mechanics (CDM) model. The CZM represents a mode II macro‐fracture, and CDM finite elements (FE) represent the damage zone of the CZM. The coupled CZM/CDM model can capture the flow of energy that takes place between the bulk material that forms the matrix and the macroscopic fracture surfaces. The CDM model, which does not account for micro‐crack interaction, is calibrated against triaxial compression tests performed on Bakken shale, so as to reproduce the stress/strain curve before the failure peak. Based on a comparison with Kachanov's micro‐mechanical model, we confirm that the critical micro‐crack density value equal to 0.3 reflects the point at which crack interaction cannot be neglected. The CZM is assigned a pure mode II cohesive law that accounts for the dependence of the shear strength and energy release rate on confining pressure. The cohesive shear strength of the CZM is calibrated by calculating the shear stress necessary to reach a CDM damage of 0.3 during a direct shear test. We find that the shear cohesive strength of the CZM depends linearly on the confining pressure. Triaxial compression tests are simulated, in which the shale sample is modeled as an FE CDM continuum that contains a predefined thin cohesive zone representing the idealized shear fracture plane. The shear energy release rate of the CZM is fitted in order to match to the post‐peak stress/strain curves obtained during experimental tests performed on Bakken shale. We find that the energy release rate depends linearly on the shear cohesive strength. We then use the calibrated shale rheology to simulate the propagation of a meter‐scale mode II fracture. Under low confining pressure, the macroscopic crack (CZM) and its damaged zone (CDM) propagate simultaneously (i.e., during the same loading increments). Under high confining pressure, the fracture propagates in slip‐friction, that is, the debonding of the cohesive zone alternates with the propagation of continuum damage. The computational method is applicable to a range of geological injection problems including hydraulic fracturing and fluid storage and should be further enhanced by the addition of mode I and mixed mode (I+II+III) propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
850.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号