首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   66篇
  国内免费   135篇
测绘学   5篇
大气科学   345篇
地球物理   65篇
地质学   36篇
海洋学   10篇
天文学   6篇
综合类   10篇
自然地理   6篇
  2023年   2篇
  2022年   9篇
  2021年   11篇
  2020年   12篇
  2019年   17篇
  2018年   14篇
  2017年   13篇
  2016年   5篇
  2015年   16篇
  2014年   19篇
  2013年   25篇
  2012年   17篇
  2011年   12篇
  2010年   19篇
  2009年   20篇
  2008年   29篇
  2007年   31篇
  2006年   28篇
  2005年   19篇
  2004年   18篇
  2003年   23篇
  2002年   19篇
  2001年   19篇
  2000年   9篇
  1999年   10篇
  1998年   17篇
  1997年   11篇
  1996年   2篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1992年   7篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1978年   3篇
排序方式: 共有483条查询结果,搜索用时 23 毫秒
41.
分辨率对区域气候极端事件模拟的影响   总被引:13,自引:2,他引:13  
汤剑平  赵鸣  苏炳凯 《气象学报》2006,64(4):432-442
利用NCAR MM5V3对1999年6月长江流域的极端异常降水事件进行了模拟,主要研究不同水平和垂直分辨率对极端区域气候事件模拟的影响。数值模拟试验表明:模式能够模拟出极端强降水的主要分布特征;水平分辨率的提高降低了模式模拟的强降水偏差,对逐日降水变化的模拟更加合理,而垂直分辨率的提高基本上也都减小了模拟的强降水过程的偏差,改善对强降水的模拟能力;模式水平、垂直分辨率的提高在一定程度上增强了对强降水过程的模拟能力。水平分辨率的提高能够改善模式对海平面气压的模拟,而垂直分辨率的提高可以改善模式模拟的地面气温和低层环流。分辨率对中层大气环流的影响不是很敏感。不同积云对流参数化方案模拟的对流降水比率随水平分辨率的变化是不同的,Grell方案对流降水比例随分辨率的提高而增加,而Kain-Fritsch方案的结果相反。  相似文献   
42.
Large-eddy simulation and Lagrangian stochastic dispersion models were used to study heavy particle dispersion in the convective boundary layer (CBL). The effects of various geostrophic winds, particle diameters, and subgrid-scale (SGS) turbulence were investigated. Results showed an obvious depression in the vertical dispersion of heavy particles in the CBL and major vertical stratification in the distribution of particle concentrations, relative to the passive dispersion. Stronger geostrophic winds tended to increase the dispersion of heavy particles in the lower CBL. The SGS turbulence, particularly near the surface, markedly influenced the dispersion of heavy particles in the CBL. For reference, simulations using passive particles were also conducted; these simulation results agreed well with results from previous convective tank experiments and numerical simulations.  相似文献   
43.
A new mean-field theory of turbulent convection is developed based on the idea that only the small-scale region of the spectrum is considered as turbulence, whereas its large-scale part, including both regular and semi-organized motions, is treated as the mean flow. In the shear-free regime, this theory predicts the convective wind instability, which causes the formation of large-scale semi-organized motions in the form of cells. In the presence of wind shear, the theory predicts another type of instability, which causes the formation of large-scale semi-organized structures in the form of rolls and the generation of convective-shear waves propagating perpendicular to the convective rolls. The spatial characteristics of these structures, such as the minimum size of the growing perturbations and the size of perturbations with the maximum growth rate, are determined. This theory might be useful for understanding the origin of large-scale cells and rolls observed in the convective boundary layer and laboratory turbulent convection  相似文献   
44.
Large-eddy simulation is used to study secondary circulations in the convective boundary layer modulated as a result of horizontally varying surface properties and surface heat fluxes over flat terrain. The presence of heat flux heterogeneity and its alignment with respect to geostrophic wind influences the formation, strength and orientation of organized thermals. Results show boundary-attached roll formation along heat flux maxima in the streamwise direction. The streamwise organization of the updrafts and downdrafts formed downwind of heterogeneities leads to counter-rotating secondary circulations in the crosswind plane. The distribution of resolved-scale pressure deviations shows large pressure gradients in the crosswind plane. Spanwise and vertical velocity variances and heat flux profiles depict considerable spatial variability compared to a homogeneous forest simulation. Secondary circulations are observed for various ambient wind scenarios parallel and perpendicular to heterogeneities. In the presence of increased wind speed, thermals emerging from the heat flux heterogeneity are elongated, and organize along and downwind of large-scale heterogeneity in the streamwise direction. Simulation with a reduced heat flux shows a shallower circulation with a lower aspect ratio. Point measurements of heat flux inside the roll circulation could be overestimated by up to 15–25% compared to a homogeneous case.  相似文献   
45.
Squall lines develop in various climate regions having diverse environmental profiles of wind shear, moisture, and temperature. In order to explore the sensitivity of squall lines to these environmental profiles, we have performed an extensive set of numerical simulations under various shear and moisture conditions in midlatitude-continental and tropical–oceanic temperature environments. From the results of the sensitivity simulations and the analyses of the environmental parameters, it is found that the static stability in a convectively unstable layer is of primary importance in determining the strength of squall lines. Under temperature environments having the same static stability, convective available potential energy (CAPE) and precipitable water content (PWC) well describe the squall-line intensity. Vertical shear also plays an important role in determining the squall-line structure as well as the intensity through the interaction with surface cold pool. The combination of the static stability in a convectively unstable layer, CAPE, and PWC should be examined in diagnosing the intensity of squall lines that develop with an optimal shear for their environment.  相似文献   
46.
On the afternoon of 3 July 2004 in Hyytiälä (Juupajoki, Finland), convective cells produced a strong downburst causing forest damage. The SMEAR II field station, situated near the damage site, enabled a unique micrometeorological analysis of a microburst with differences above and inside the canopy. At the time of the event, a squall line associated with a cold front was crossing Hyytiälä with a reflectivity maximum in the middle of the squall line. A bow echo, rear-inflow notch, and probable mesovortex were observed in radar data. The bow echo moved west-north-west, and its apex travelled just north of Hyytiälä. The turbulence data were analysed at two locations above the forest canopy and at one location at sub-canopy. At 1412 EET (Eastern European Time, UTC+2), the horizontal and vertical wind speed increased and the wind veered, reflecting the arrival of a gust front. At the same time, the carbon dioxide concentration increased due to turbulent mixing, the temperature decreased due to cold air flow from aloft and aerosol particle concentration decreased due to rain scavenging. An increase in the number concentration of ultra-fine particles (< 10 nm) was detected, supporting the new particle formation either from cloud outflow or due to rain. Five minutes after the gust front (1417 EET), strong horizontal and downward vertical wind speed gusts occurred with maxima of 22 and 15 m s?1, respectively, reflecting the microburst. The turbulence spectra before, during and after the event were consistent with traditional turbulence spectral theory.  相似文献   
47.
This study focuses on the intrusion of dry air into the convective boundary layer (CBL) originating from the top of the CBL. Aircraft in-situ measurements from the IHOP_2002 field campaign indicate a prevalence of negative skewness of the water vapour distribution within the growing daytime CBL over land. This negative skewness is interpreted according to large-eddy simulations (LES) as the result of descending dry downdrafts originating from above the mixed layer. LES are used to determine the statistical properties of these intrusions: their size and thermodynamical characteristics. A conditional sampling analysis demonstrates their significance in the retrieval of moisture variances and fluxes. The rapid CBL growth explains why greater negative skewness is observed during the growing phase: the large amounts of dry air that are quickly incorporated into the CBL prevent a full homogenisation by turbulent mixing. The boundary-layer warming in this phase also plays a role in the acquisition of negative buoyancy for these dry tongues, and thus possibly explains their kinematics in the lower CBL. Budget analysis helps to identify the processes responsible for the negative skewness. This budget study underlines the main role of turbulent transport, which distributes the skewness produced at the top or the bottom of the CBL into the interior of the CBL. The dry tongues contribute significantly to this turbulent transport.  相似文献   
48.
The linear stability analysis of interstitial liquid within the mushy layer relative to a steady basic state is performed in order to incorporate the effect of uniform rotation on the onset of convective instability whose existence was found by Anderson and Worster (1996). The full set of non–dimensional governing equations for the temperature field, the local solid fraction and the fluid velocity are reduced asymptotically. In particular, the limit of small dimensionless mushy layer thickness, the limit of small differences between the initial and eutectic compositions of the liquid and the limit of large Stefan number are considered. The square root of Taylor number is assumed to be of the order unity. These simplifying assumptions involved in our analysis lead to a much simplified model which can essentially be solved analytically.  相似文献   
49.
In regions of tectonic extension, vertical convective transport of heat in the lithosphere is inevitable. The resulting departure of lithosphere temperature and thickness from conduction-model estimates depends upon the mechanical mode of extension and upon how rapidly extension is (and has been) taking place. Present knowledge of these processes is insufficient to provide adequate constraints on thermal models. The high and variable regional heat flow and the intense local heat discharge at volcanic centers in the Basin and Range province of the United States could be accounted for by regional and local variations in extensional strain rate without invoking anomalous conductive heat flow from the asthenosphere. Anomalous surface heat flow typical of the province could be generated by distributed extension at average rates of about 1/2 to 1%/m.y., similar to rates estimated from structural evidence. To account for higher heat flow in subregions like the Battle mountain High, these rates would be increased by a factor of about 3, and locally at active bimodal volcanic centers, by an order of magnitude more.  相似文献   
50.
Mean Profiles of Moisture Fluxes in Snow-Filled Boundary Layers   总被引:1,自引:0,他引:1  
Profiles of moisture fluxes have been examined for convective boundary layers containing clouds and snow, using data derived from aircraft measurements taken on four dates during the 1983/1984 University of Chicago lake-effect snow project. Flux profiles were derived from vertical stacks of aircraft cross-wind flight legs taken at various heights over Lake Michigan near the downwind shore. It was found that, if ice processes are taken into account, profiles of potential temperature and water content were very similar to those presented in past studies of convective boundary layers strongly heated from below. Profiles of total water content and equivalent potential temperature adjusted for ice were nearly invariant with height, except very near the top of the boundary layer, suggesting that internal boundary-layer mixing processes were rapid relative to the rates at which heat and vapour were transported into the boundary layer through entrainment and surface fluxes. Ice was found to play a significant, measurable role in boundary-layer moisture fluxes. It was estimated that 40 to 57% of the upward vapour flux was returned to the surface in the form of snow, converting about 45 to 64% of the surface latent heat flux into sensible heat in the snow-producing process. Assuming advective fluxes are relatively small (thought to be appropriate after the first few tens of km over the lake as suggested by past studies), the boundary layer was found to warm at a rate faster than could be explained by surface heat fluxes and latent heat releases alone, the remainder of the heating presumably coming from radiational processes and entrainment. Discussions of moisture phase change processes throughout the boundary layer and estimates of errors of these flux measurements are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号