首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   9篇
  国内免费   4篇
测绘学   1篇
大气科学   4篇
地球物理   11篇
地质学   5篇
海洋学   8篇
天文学   1篇
自然地理   2篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
21.
1.IntroductionNitrousoxide(N,O)andmethane(CH.)arethemostimportantgreenhousegassesintheatmospherewithitscontributiontoglobalwarmingjustlowerthanCO2.Theirconcentrationsinatmospherehavebeennotedtoincreasecurrentlyattherateof0.25%yr--'andl.02%yr',respectively(IPCC,1995).Atpresent,theincreaseofNZOandCH4intheatmospherehasbeenestimatedtoaccountfor20--25%oftheglobalwarming(FAO&IAEA,1992;Bailes&Bridges,1992).NOdoesnotabsorbradiationdirectlyintheatmosphere,buttheincreasingconcentrationofNOmay…  相似文献   
22.
为改善临高县海岸带生态环境、提升海岸带生态价值及保障海岸带生态安全,文章在实地考察、文献查阅和资料梳理的基础上,概述了当前临高县海岸带面临的典型生态环境问题,分析生态环境退化的主要原因,提出了海岸带保护修复的对策建议。研究结果表明:临高海岸带地区砂质海岸、红树林、珊瑚礁和白蝶贝等面临较严重的海岸侵蚀、生态环境退化和生物资源枯竭等问题;砂质海岸侵蚀主要受海平面上升、风暴潮等自然因素影响,红树林生态系统主要受围海养殖、环境污染影响,珊瑚礁、白蝶贝等海洋生态系统则主要受渔业捕捞、水体污染等人为活动影响;基于海岸生态退化现状及原因分析,提出文澜河口、抱吴港等岸段开展沙滩喂养及生态堤建设,新盈湾、黄龙湾、金牌湾等重点区实施红树林修复,珊瑚礁、白蝶贝保育区加强自然封育、严防人工干扰等建议措施。  相似文献   
23.
生态系统与人类健康   总被引:1,自引:0,他引:1  
简要介绍了千年生态系统评估(MA)项目针对生态系统与人类健康编写的《生态系统与人类福祉:健康综合报告》的核心内容。报告表明:① 生态系统及其服务是人类生存和维持健康的根基,但生态系统与人类健康之间的关系多是间接性的,可能出现时空移位,而且还会受到许多动态因素的影响,因而对其认知难度较大;② 在过去的50年中,主要由人类活动造成的生态系统变化,一方面显著改善了人类的健康状况,另一方面人类也为此付出了日益昂贵的代价,并对未来的人类健康构成了新的威胁;③ 对于未来50年(2000—2050年)的生态系统变化与人类健康状况,虽然MA的4种情景的模拟结果不尽相同,但是,它们一致认为人类对食物和水资源等生态系统服务的需求将大幅增长,人类活动对生态系统的快速转化将会持续,而且难以实现食物安全及消除儿童营养不良等目标;④ 长远来看,生态系统的可持续管理与人类健康状况的改善具有相互促进作用。但是,为了实现改善人类健康和保育生态系统的双赢目标,必需对现行的管理、制度、法规和政策等进行一系列的全面改革。  相似文献   
24.
Vulnerability is registered not by exposure to hazards alone; it also resides in the resilience of the system experiencing the hazard. Resilience (the capacity of a system to absorb recurrent disturbances, such as natural disasters, so as to retain essential structures, processes and feedbacks) is important for the discussion of vulnerability for three reasons: (1) it helps evaluate hazards holistically in coupled human–environment systems, (2) it puts the emphasis on the ability of a system to deal with a hazard, absorbing the disturbance or adapting to it, and (3) it is forward-looking and helps explore policy options for dealing with uncertainty and future change. Building resilience into human–environment systems is an effective way to cope with change characterized by surprises and unknowable risks. There seem to be four clusters of factors relevant to building resilience: (1) learning to live with change and uncertainty, (2) nurturing various types of ecological, social and political diversity for increasing options and reducing risks, (3) increasing the range of knowledge for learning and problem-solving, and (4) creating opportunities for␣self-organization, including strengthening of local institutions and building cross-scale linkages and problem-solving networks.  相似文献   
25.
The identification of energy sources, pathways and trophic linkages among organisms is crucial for the understanding of food web dynamics. Stable isotopes were used to identify the trophic level of food web components and track the incorporation of organic matter of different origins in the coastal ecosystem adjacent to the Tagus estuary. It was shown that the river Tagus is a major source of organic carbon to this system. Also, the wide difference in δ13C among the primary consumers allowed the identification of the pelagic and the benthic energy pathways. The maximum trophic level observed was 2.4 for Sepia officinalis. This value is indicative of a short food web. It was concluded that the diet of the upper trophic level species relies directly on the lower food web levels to a considerable extent, instead of relying mostly on intermediate trophic level species. Moreover, the δ15N values of primary consumers were very close to that of particulate organic matter, probably due to poorly known processes occurring at the basis of the food web. This lowers the trophic length of the whole food web. Reliance on benthic affinity prey was high for all upper trophic level secondary consumers.  相似文献   
26.
In a context of both long-term climatic changes and short-term climatic shocks, temporal dynamics profoundly influence ecosystems and societies. In low income contexts in the Tropics, where both exposure and vulnerability to climatic fluctuations is high, the frequency, duration, and trends in these fluctuations are important determinants of socio-ecological resilience. In this paper, the dynamics of six diverse socio-ecological systems (SES) across the Tropics – ranging from agricultural and horticultural systems in Africa and Oceania to managed forests in South East Asia and coastal systems in South America – are examined in relation to the 2015–16 El Niño, and the longer context of climatic variability in which this short-term ‘event’ occurred. In each case, details of the socio-ecological characteristics of the systems and the climate phenomena experienced during the El Niño event are described and reflections on the observed impacts of, and responses to it are presented. Drawing on these cases, we argue that SES resilience (or lack of) is, in part, a product of both long-term historical trends, as well as short-term shocks within this history. Political and economic lock-ins and dependencies, and the memory and social learning that originates from past experience, all contribute to contemporary system resilience. We propose that the experiences of climate shocks can provide a window of insight into future ecosystem responses and, when combined with historical perspectives and learning from multiple contexts and cases, can be an important foundation for efforts to build appropriate long-term resilience strategies to mediate impacts of changing and uncertain climates.  相似文献   
27.
To ensure that destructive bottom fishing activities do not have significant adverse impacts on Vulnerable Marine Ecosystems (VMEs) in high seas areas of the World Ocean, as required by United Nations General Assembly Resolution 61–105, knowledge of the locations of VMEs is required. Quantifying the occurrence and abundance of VME indicator taxa in research bottom-trawl samples, as well as from in situ observations with underwater photography, provides methods for detecting these ecosystems. A case study is presented in which a threshold density of indicator taxa was used as the basis for VME designation. In 2009, high densities of VME indicator taxa were encountered at 11 sites off th`e South Orkney Islands in the Atlantic sector of the Southern Ocean. In most cases, thresholds were exceeded by a limited number of VME indicator taxa, primarily representatives of the class Demospongiae (siliceous sponges), Hexactinellida (glass sponges) and Ascidiacea (tunicates). In situ imagery further showed the importance of bryozoans (lace corals), scleractinians (stony corals) and stylastrids (hydrocorals) in the study region. The approach outlined here, which relies on widely used sampling techniques, could be employed throughout the World Ocean to detect and document the presence of VMEs from existing datasets. To illustrate this point, the method was applied to a separate dataset, collected in 2006, from a research cruise off the northern Antarctic Peninsula, which led to the detection of 17 VMEs. The VMEs from both the 2006 and 2009 data are now registered and influence the management of fisheries in the Southern Ocean.  相似文献   
28.
A simulation model based on satellite observations of monthly vegetation cover was used to estimate monthly carbon fluxes in terrestrial ecosystems from 1982 to 1998. The NASA–CASA model was driven by vegetation properties derived from the Advanced Very High Resolution Radiometer (AVHRR) and radiative transfer algorithms that were developed for Moderate Resolution Imaging Spectroradiometer (MODIS). For the terrestrial biosphere, predicted net ecosystem production (NEP) flux for atmospheric CO2 has varied widely between an annual source of −0.9 Pg C per year and a sink of +2.1 Pg C per year. The southern hemisphere tropical zones (SHT, between 0° and 30°S) have a major influence over the predicted global trends in interannual variability of NEP. In contrast, the terrestrial NEP sink for atmospheric CO2 on the North American (NA) continent has been fairly consistent between +0.2 and +0.3 Pg C per year, except during relatively cool annual periods when continental NEP fluxes are predicted to total to nearly zero. The predicted NEP sink for atmospheric CO2 over Eurasia (EA) increased notably in the late 1980s and has been fairly consistent between +0.3 and +0.55 Pg C per year since 1988. High correlations can be detected between the El Niño Southern Oscillation (ENSO) and predicted NEP fluxes on the EA continent and for the SHT latitude zones, whereas NEP fluxes for the North American continent as a whole do not correlate strongly with ENSO events over the same time series since 1982. These observations support the hypothesis that regional climate warming has had notable but relatively small-scale impacts on high latitude ecosystem (tundra and boreal) sinks for atmospheric CO2.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号