首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3727篇
  免费   1252篇
  国内免费   1892篇
测绘学   49篇
大气科学   4013篇
地球物理   644篇
地质学   961篇
海洋学   205篇
天文学   18篇
综合类   152篇
自然地理   829篇
  2024年   63篇
  2023年   130篇
  2022年   215篇
  2021年   262篇
  2020年   254篇
  2019年   347篇
  2018年   233篇
  2017年   281篇
  2016年   228篇
  2015年   290篇
  2014年   372篇
  2013年   435篇
  2012年   377篇
  2011年   362篇
  2010年   256篇
  2009年   304篇
  2008年   275篇
  2007年   367篇
  2006年   306篇
  2005年   244篇
  2004年   180篇
  2003年   195篇
  2002年   132篇
  2001年   127篇
  2000年   129篇
  1999年   75篇
  1998年   76篇
  1997年   63篇
  1996年   56篇
  1995年   61篇
  1994年   46篇
  1993年   29篇
  1992年   25篇
  1991年   20篇
  1990年   9篇
  1989年   14篇
  1988年   14篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
排序方式: 共有6871条查询结果,搜索用时 15 毫秒
101.
不同降水天气系统自然降水特征及火箭人工增雨潜力分析   总被引:4,自引:1,他引:4  
统计分析了1981~2000年20年中15种降水天气系统影响下河北地区自然降水特征,并对火箭人工增雨的潜力进行了初步分析。统计分析表明:西来槽类、高空低涡类、冷锋、切变线和副高后部等天气系统是影响河北地区的主要降水系统,其降雨量和降雨日数占到了90%以上;不同的天气系统在不同季节对降水的贡献有所不同,其中西来槽类的降雨量和降雨日数均居首位,开展人工增雨催化作业机会最多;夏季降水系统最强,云水资源最为丰富,人工增雨潜力很大,是开展火箭人工增雨催化作业的最佳季节,春秋两季增雨潜力明显比夏季小,冬季最小;倒槽、副高后部、台风低压、高空低涡类和气旋类等系统最强,日降雨量和单位面积降雨量明显比其它系统大,尤其对蓄水型火箭增雨作业十分有利。  相似文献   
102.
对闽东干旱的成因和干旱的环流形势进行了探讨,着重分析了夏旱期间人工增雨作业的天气形势以及不同形势、不同云型下的降水情况。结果表明:闽东干旱的形成与大型环流形势、地理因素、土壤植被等有关,平均而言,沿海干旱明显多于内陆山区;夏季发生干旱的机率最大而且强度级别高,西太平洋副热带高压是致旱的主要天气系统;在夏季,台风型(T)、弱流场型(R)是进行人工增雨作业的优势天气型,Cb、Cu、Sc云是开展人工增雨作业比较适合的作业云。这些结果为夏旱期间开展人工增雨作业提供了理论依据。  相似文献   
103.
1. IntroductionAs well known, Kuroshio is a famous and strongwest boundary current in the North Pacific. It trans-fers enormous energy from the low latitudes to themid-high latitudes and releases huge heat flux to theatmosphere above (Hsiung, 1985). The variation ofKuroshio exerts great influence on weather and cli-mate in East Asian.During 1950-60s, Lü (1950, 1964) found that thewestern North Pacific SSTA had a close relation withsummer rainfall in China. In the 1970s, evidencesshowed…  相似文献   
104.
The contribution of areal precipitation of the catchment from Cuntan to Yichang (Three Gorges area) to eight flood peaks of the Upper Yangtze River (the upper reaches of the Yangtze River) is diagnosed for 1998 flood season. A rainfall-runoff model is employed to simulate runoffs of-this catchment. Comparison of observed and simulated runoffs shows that the rainfall-runoff model has a good capability to simulate the runoff over a large-scale river and the results describe the eight flood peaks very well. Forecast results are closely associated with the sensitivity of the model to rainfall and the calibration processes. Other reasons leading to simulation errors are further discussed.  相似文献   
105.
The Guil River Valley (Queyras, Southern French Alps) is prone to catastrophic floods, as the long historical archives and Holocene sedimentary records demonstrate. In June 2000, the upper part of this valley was affected by a “30-year” recurrence interval (R.I.) flood. Although of lower magnitude and somewhat different nature from that of 1957 (>100-year R.I. flood), the 2000 event induced serious damage to infrastructure and buildings on the valley floor. Use of methods including high-resolution aerial photography, multi-date mapping, hydraulic calculations and field observations made possible the characterisation of the geomorphic impacts on the Guil River and its tributaries. The total rainfall (260 mm in four days) and maximum hourly intensity (17.3 mm h−1), aggravated by pre-existing saturated soils, explain the immediate response of the fluvial system and the subsequent destabilisation of slopes. Abundant water and sediment supply (landsliding, bank erosion), particularly from small catchment basins cut into slaty, schist bedrock, resulted in destructive pulses of debris flow and hyperconcentrated flows. The specific stream power of the Guil and its tributaries was greater than the critical stream power, thus explaining the abundant sediment transport. The Guil discharge was estimated as 180 m3 s−1 at Aiguilles, compared to the annual mean discharge of 6 m3 s−1 and a June mean discharge of 18 m3 s−1. The impacts on the Guil valley floor (flooding, aggradation, generalised bank erosion and changes in the river pattern) were widespread and locally influenced by variations in the floodplain slope and/or channel geometry. The stream partially reoccupied former channels abandoned or modified in their geometry by various structures built during the last four decades, as exemplified by the Aiguilles case study, where the worst damage took place. A comparative study of the geomorphic consequences of both the 1957 and 2000 floods shows that, despite their poor maintenance, the flood control structures built after the 1957 event were relatively efficient, in contrast to unprotected places. The comparison also demonstrates the role of land-use changes (conversion from traditional agro-pastoral life to a ski/hiking-based economy, construction of various structures) in reducing the Guil channel capacity and, more generally, in increasing the vulnerability of the human installations. The efficiency of the measures taken after the 2000 flood (narrowing and digging out of the channel) is also assessed. Final evaluation suggests that, in such high mountainous environments, there is a need to keep most of the 1957 flooded zone clear of buildings and other structures (aside from the existing villages and structures of particular economic interest), in order to enable the river to migrate freely and to adjust to exceptional hydro-geomorphic conditions without causing major damage.  相似文献   
106.
Recent advances have been made to modernize estimates of probable precipitation scenarios; however, researchers and engineers often continue to assume that rainfall events can be described by a small set of event statistics, typically average intensity and event duration. Given the easy availability of precipitation data and advances in desk‐top computational tools, we suggest that it is time to rethink the ‘design storm’ concept. Design storms should include more holistic characteristics of flood‐inducing rain events, which, in addition to describing specific hydrologic responses, may also be watershed or regionally specific. We present a sensitivity analysis of nine precipitation event statistics from observed precipitation events within a 60‐year record for Tompkins County, NY, USA. We perform a two‐sample Kolmogorov–Smirnov (KS) test to objectively identify precipitation event statistics of importance for two related hydrologic responses: (1) peak outflow from the Six Mile Creek watershed and (2) peak depth within the reservoir behind the Six Mile Creek Dam. We identify the total precipitation depth, peak hourly intensity, average intensity, event duration, interevent duration, and several statistics defining the temporal distribution of precipitation events to be important rainfall statistics to consider for predicting the watershed flood responses. We found that the two hydrologic responses had different sets of statistically significant parameters. We demonstrate through a stochastic precipitation generation analysis the effects of starting from a constrained parameter set (intensity and duration) when predicting hydrologic responses as opposed to utilizing an expanded suite of rainfall statistics. In particular, we note that the reduced precipitation parameter set may underestimate the probability of high stream flows and therefore underestimate flood hazard. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
107.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
108.
The accurate measurement of precipitation is essential to understanding regional hydrological processes and hydrological cycling. Quantification of precipitation over remote regions such as the Tibetan Plateau is highly unreliable because of the scarcity of rain gauges. The objective of this study is to evaluate the performance of the satellite precipitation product of tropical rainfall measuring mission (TRMM) 3B42 v7 at daily, weekly, monthly, and seasonal scales. Comparison between TRMM grid precipitation and point‐based rain gauge precipitation was conducted using nearest neighbour and bilinear weighted interpolation methods. The results showed that the TRMM product could not capture daily precipitation well due to some rainfall events being missed at short time scales but provided reasonably good precipitation data at weekly, monthly, and seasonal scales. TRMM tended to underestimate the precipitation of small rainfall events (less than 1 mm/day), while it overestimated the precipitation of large rainfall events (greater than 20 mm/day). Consequently, TRMM showed better performance in the summer monsoon season than in the winter season. Through comparison, it was also found that the bilinear weighted interpolation method performs better than the nearest neighbour method in TRMM precipitation extraction.  相似文献   
109.
This paper studies the chemo‐mechanics of cemented granular solids in the context of continuum thermodynamics for fluid‐saturated porous media. For this purpose, an existing constitutive model formulated in the frame of the Breakage Mechanics theory is augmented to cope with reactive processes. Chemical state variables accounting for the reactions between the solid constituents and the solutes in the pore fluid are introduced to enrich the interactions among the microstructural units simulated by the model (i.e., grains and cement bonds). Two different reactive processes are studied (i.e., grain dissolution and cement precipitation), using the chemical variables to describe the progression of the reactions and track changes in the size of grains and bonds. Finally, a homogenization strategy is used to derive the energy potentials of the solid mixture, adopting probability density functions that depend on both mechanical and chemical indices. It is shown that the connection between the statistics of the micro‐scale attributes and the continuum properties of the solid enables the mathematical capture of numerous mechanical effects of lithification and chemical deterioration, such as changes in stiffness, expansion/contraction of the elastic domain, and development of inelastic strains during reaction. In particular, the model offers an interpretation of the plastic strains generated by aggressive environments, which are here interpreted as an outcome of chemically driven debonding and comminution. As a result, the model explains widely observed macroscopic signatures of geomaterial degradation by reconciling the energetics of the deformation/reaction processes with the evolving geometry of the microstructural attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
110.
Haloxylon ammodendron is a desert shrub used extensively in China for restoring degraded dry lands. An understanding of the water source used by H. ammodendron plantations is critical achieving sustainable vegetation restoration. We measured mortality, shoot size, and rooting depth in 5‐, 10‐, 20‐, and 40‐year‐old H. ammodendron plantations. We examined stable isotopic ratios of oxygen (δ18O) in precipitation, groundwater, and soil water in different soil layers and seasons, and in plant stem water to determine water sources at different shrub ages. We found that water acquisition patterns in H. ammodendron plantations differed with plantation age and season. Thus, the main water source for 5‐year‐old shrubs was shallow soil water. Water sources of 10‐year‐old shrubs shifted depending on the soil water conditions during the season. Although their tap roots could absorb deep soil water, the plantation main water sources were from soil water, and about 50% of water originated from shallow and mid soil. This pattern might occur because main water sources in these plantations were changeable over time. The 20‐ and 40‐year‐old shrubs acquired water mainly from permanent groundwater. We conclude that the main water source of a young H. ammodendron plantation was soil water recharged by precipitation. However, when roots reached sufficient depth, water originated mainly from the deep soil water, especially in the dry season. The deeply rooted 20‐ and 40‐year‐old shrubs have the ability to exploit a deep and reliable water source. To achieve sustainability in these plantations, we recommend a reduction in the initial density of H. ammodendron in the desert‐oasis ecotone to decelerate the consumption of shallow soil water during plantation establishment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号