首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   21篇
  国内免费   33篇
测绘学   125篇
大气科学   121篇
地球物理   64篇
地质学   104篇
海洋学   7篇
天文学   1篇
综合类   23篇
自然地理   128篇
  2023年   9篇
  2022年   10篇
  2021年   15篇
  2020年   38篇
  2019年   15篇
  2018年   9篇
  2017年   34篇
  2016年   20篇
  2015年   25篇
  2014年   39篇
  2013年   42篇
  2012年   14篇
  2011年   27篇
  2010年   11篇
  2009年   24篇
  2008年   15篇
  2007年   25篇
  2006年   22篇
  2005年   23篇
  2004年   15篇
  2003年   31篇
  2002年   19篇
  2001年   11篇
  2000年   13篇
  1999年   12篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1990年   8篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1980年   1篇
排序方式: 共有573条查询结果,搜索用时 453 毫秒
171.
Wind speed profiles above a forest canopy relate to scalar exchange between the forest canopy and the atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can be classified by a stability index developed assuming wind flow above a flat plane. However, can such a stability index be used to classify vertical wind speed profiles observed above a sloping forest at nighttime, where drainage flow often occurs? This paper examines the use of the bulk Richardson number to classify wind speed profiles observed above a sloping forest at nighttime. Wind speed profiles above a sloping forest were classified by the bulk Richardson number Ri B . Use of Ri B distinguished between drainage flow, shear flow, and transitional flow from drainage flow to shear flow. These results suggest that Ri B is useful to interpret nighttime CO2 and energy fluxes above a sloping forest. Through clear observational evidence, we also show that the reference height should be high enough to avoid drainage-flow effects when calculating Ri B .  相似文献   
172.
Deforestation in the Himalayas is generally seen as caused primarily by population growth. Based on interviews and the analysis of satellite images, we critically examine this view using Basho Valley in the Western Himalayas of Pakistan as a case study. Our findings indicate that the forest of Basho has been reduced by at least 50% after the valley was opened up through the construction of a link road in 1968. Large-scale legal and illegal commercial harvesting was carried out after the construction of the road. While legal commercial harvesting was stopped in 1987, illegal harvesting has since continued with the involvement of the Forest Department. The findings of this study do not support theories in which deforestation is attributed to rapid population growth. Instead, mismanagement and illegal commercial harvesting endorsed by the Forest Department have been the main causes of deforestation in Basho Valley.  相似文献   
173.
Urs Eggenberger  Daniel Kurz   《Chemical Geology》2000,170(1-4):243-257
The steady-state soil chemistry model PROFILE was used to calculate the chemical status of forest soils under present deposition loads for two areas with dissimilar ecosystem properties. Two regions in Switzerland, with contrasting bedrock geology were selected to be investigated in detail: 88 locations in the Jura Mountains, representative for carbonate bedrock and 91 locations in the Ticino Area dominated by metamorphic crystalline host rocks. Weathering rates calculated for the key regions cover the tremendous range between 0.013 and 25 keq ha−1 yr−1. In the Ticino Area, the effect of increased abundance of relatively fast weathering silicates (epidote, hornblende and plagioclase) on the weathering rate is apparently masked by the total effects of the physical conditions applied and by the variation in the deposition load. In the Jura Mountains, generally high weathering rates occur with about 50% of the sites yielding rates above 1 keq ha−1 yr−1. In many of the sites investigated, however, carbonates have already been dissolved completely in the soil horizons of interest resulting in very low weathering rates. The critical load of actual acidity was calculated according to: CLAcidity=RWeathering−ANCLeaching, where alkalinity leaching is estimated by keeping the base cation to aluminum molar ratio at the critical limit of 1 at steady-state. The minimum critical load calculated was 0.2 keq ha−1 yr−1 and the maximum was 6.2 keq ha−1 yr−1. Comparing the cumulative frequency distributions of critical loads of actual acidity for forest soils in the individual areas it can be seen that the differences between the key regions are less substantial than with the weathering rates. Critical loads of acidity for the Ticino Area range from 1 to 3.9 keq ha−1 yr−1. Sites yielding the lowest critical loads of acidity are observed in the Jura Mountains. Among these apparent sensitive soils are soils with intermediate or high weathering rates, although it has depleted topsoil layers. Within the context of this model application, it becomes apparent that the sensitivity of these soils with respect to acidification is also governed by the alkalinity leaching term and not only by the susceptibility of its minerals to weathering.  相似文献   
174.
The influence of landscape spatial structure on ecological processes has recently received much attention. Comparisons are made here between the spatial structure of grasslands, and active and extirpated Gunnison's prairie dog (Cynomys gunnisoni Hollister) towns at the Petrified Forest National Park, Arizona, U.S.A. The spatial structure of bare ground was quatified using a box-counting technique to extract landscape fractal dimensions, D, and bare-ground patch size. These landscapes are fractal, and active prairie dog towns had higher fractal dimensions, i.e. a more homogeneous spatial structure as D approaches 2, than inactive towns, which had higher fractal dimensions than unmodified grasslands. Morisita's index suggested that shrubs were more randomly distributed on prairie dog towns and more aggregated on grassland habitats. The different spatial distributions of bare ground and shrubs have the potential to influence resource distributions between these habitats for both prairie dogs and other fauna. Consequently, the presence of prairie dogs in these grasslands increases grassland landscape heterogeneity at large spatial scales, potentially enhancing beta diversity.  相似文献   
175.
 Single zircon U–Pb dating combined with 207Pb/206Pb ages obtained by the evaporation method constrains the emplacement of tonalitic, trondhjemitic, and granodioritic orthogneisses of the Moldanubian zone in the Black Forest between 500 and 510 Ma. Two detrital zircon populations of 1.9 and 1.6 Ga indicate Early-Middle Proterozoic material in the former setting of the basement. The initial eNd values range from –0.1 to –3.4 and mean crustal residence ages of 1.0–1.4 Ga are consistent with involvement of Early-Middle Proterozoic crust, and a subordinate juvenile component probably originating from subduction-related melting of the mantle. The orthogneisses have fractionated REE patterns and slightly higher K2O/Na2O ratios than typical low-K tonalite–trondhjemite–granite suites. The chemical data are interpreted as evidence for melting of amphibolite and contributions from evolved crust. The emplacement of the orthogneisses was superceded by a high-temperature metamorphic event at ∼480 Ma which we interpret as a result of lithospheric thinning in a marginal basin behind a Cambrian magmatic arc. Received: 29 March 1999 / Accepted: 25 August 1999  相似文献   
176.
茂兰森林生态系统对岩溶环境的适应与调节   总被引:25,自引:5,他引:20  
通过对贵州茂兰森林区岩溶作用下森林生态特点的研究表明,岩溶山区由于岩溶作用导致了地貌、土壤、水分等状况的特异性,其森林生态系统行为对岩溶作用也作出了相应的响应,如森林生态系统虽然生物多样性、物种的特有性仍然较好,但物种以钙生性、旱生性为主,生产力低下,森林生态系统主要通过诸如无性更新、不间断随时更新等方式来适应严酷的岩溶环境。因此要保持和恢复岩溶石山区森林生态系统生产力,其首要的基础研究问题是岩溶作用影响下森林植物的生境胁迫的机制及其动态,森林植物对这种胁迫的适应性及其基因调控机理。   相似文献   
177.
中国不同气候带各类型森林的生物量和净第一性生产力   总被引:27,自引:0,他引:27  
李高飞  任海 《热带地理》2004,24(4):306-310
根据<中国植被>的区划,将收集的全国984个样点的森林数据归并到5种气候带类型中,计算了各类型森林以及同一类型森林(分人工林和天然林)的生物量和净第一性生产力,还计算了不同气候带森林各器官的平均生物量和净第一性生产力.结果表明,从寒温带到热带各类型森林的生物量和净第一性生产力逐渐增加,天然林的生物量大于人工林生物量;除热带林外,人工林的净第一性生产力大于天然林净第一性生产力.  相似文献   
178.
Synthetic Aperture Radar (SAR) texture has been demonstrated to have the potential to improve forest biomass estimation using backscatter. However, forests are 3D objects with a vertical structure. The strong penetration of SAR signals means that each pixel contains the contributions of all the scatterers inside the forest canopy, especially for the P-band. Consequently, the traditional texture derived from SAR images is affected by forest vertical heterogeneity, although the influence on texture-based biomass estimation has not yet been explicitly explored. To separate and explore the influence of forest vertical heterogeneity, we introduced the SAR tomography technique into the traditional texture analysis, aiming to explore whether TomoSAR could improve the performance of texture-based aboveground biomass (AGB) estimation and whether texture plus tomographic backscatter could further improve the TomoSAR-based AGB estimation. Based on the P-band TomoSAR dataset from TropiSAR 2009 at two different sites, the results show that ground backscatter variance dominated the texture features of the original SAR image and reduced the biomass estimation accuracy. The texture from upper vegetation layers presented a stronger correlation with forest biomass. Texture successfully improved tomographic backscatter-based biomass estimation, and the texture from upper vegetation layers made AGB models much more transferable between different sites. In addition, the correlation between texture indices varied greatly among different tomographic heights. The texture from the 10 to 30 m layers was able to provide more independent information than the other layers and the original images, which helped to improve the backscatter-based AGB estimation.  相似文献   
179.
Nutrient deficiency in forest stands has a negative impact on timber production. Although there are numerous studies investigating nutrient deficiency in forests using remote sensing, research has usually focused on extracting nutrient/pigment concentrations using hyperspectral imagery. Results of studies using this method of assessment are uncertain at the canopy level. This study proposes using freely available multispectral imagery to identify nutrient deficiency in commercially managed forest plantations. A classification map of nutrient deficient, healthy, and a third class, other, for State spruce forests in the Republic of Ireland was constructed using multispectral Sentinel 2 images from Spring and a Random Forest model. The forest area of interest (AOI) was Sitka spruce or Norway spruce plantations greater than 12 years old. Results showed that the overall accuracy was 89% and the associated Kappa Index of agreement was 79%. An unbiased area estimator was vital for an accurate estimate of the scale of nutrient deficiency, which concluded that 23% of the AOI was nutrient deficient. Early detection of nutrient deficiency is crucial to mitigate negative impacts on productivity so a time series analysis of the spectral response of healthy and nutrient deficient classes using Google Earth Engine's Landsat 5, 7, and 8 archive was carried out. A control of known nutrient deficient sites, as identified through foliar analysis, was used for comparison with the nutrient deficient and healthy training data. The spectral response showed a decrease through time for all of the foliar analysis and training data using the green (520–600 nm), red (630–690 nm), and SWIR spectra (1550–1700 nm) during Spring. This decreasing trend is due to the growth of foliage, with the difference in spectral response between nutrient deficient and healthy stands being attributed to the presence of chlorosis in stands suffering from nutrient deficiency. Spectral thresholds using digital numbers for nutrient deficient stands were identified for an operational optimum age cohort of between 10–12 years old which will be used for early detection.  相似文献   
180.
Forest plantations are an important source of terrestrial carbon sequestration. The forest of Robinia pseudoacacia in the Yellow River Delta (YRD) is the largest artificial ecological protection forest in China. However, more than half of the forest has appeared different degrees of dieback and even death since the 1990s. Timely and accurate estimation of the forest aboveground biomass (AGB) is a basis for studying the carbon cycle of forests. Light Detecting and Ranging (LiDAR) has been proved to be one of the most powerful methods for forest biomass estimation. However, because of an irregular and overlapping shape of the broadleaved forest canopy in a growing season, it is difficult to segment individual trees and estimate the tree biomass from airborne LiDAR data. In this study, a new method was proposed to solve this problem of individual tree detection in the Robinia pseudoacacia forest based on a combination of the Unmanned Aerial Vehicle-Light Detecting and Ranging (UAV-LiDAR) with the Backpack-LiDAR. The proposed method mainly consists of following steps: (i) at a plot level, trees in the UAV-LiDAR data were detected by seed points obtained by an individual tree segmentation (ITS) method from the Backpack-LiDAR data; (ii) height and diameter at breast height (DBH) of an individual tree would be extracted from UAV and Backpack LiDAR data, respectively; (iii) the individual tree AGB would be calculated through an allometric equation and the forest AGB at the plot level was accumulated; and (iv) the plot-level forest AGB was taken as a dependent variable, and various metrics extracted from UAV-LiDAR point cloud data as independent variables to estimate forest AGB distribution in the study area by using both multiple linear regression (MLR) and random forest (RF) models. The results demonstrate that: (1) the seed points extracted from Backpack-LiDAR could significantly improve the overall accuracy of individual tree detection (F = 0.99), and thus increase the forest AGB estimation accuracy; (2) compared with MLR model, the RF model led to a higher estimation accuracy (p < 0.05); and (3) LiDAR intensity information selected by both MLR and RF models and laser penetration rate (LP) played an important role in estimating healthy forest AGB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号