首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2635篇
  免费   760篇
  国内免费   1440篇
测绘学   39篇
大气科学   2245篇
地球物理   1022篇
地质学   861篇
海洋学   150篇
天文学   10篇
综合类   99篇
自然地理   409篇
  2024年   17篇
  2023年   67篇
  2022年   98篇
  2021年   154篇
  2020年   151篇
  2019年   177篇
  2018年   166篇
  2017年   188篇
  2016年   148篇
  2015年   198篇
  2014年   223篇
  2013年   402篇
  2012年   216篇
  2011年   210篇
  2010年   163篇
  2009年   214篇
  2008年   200篇
  2007年   262篇
  2006年   260篇
  2005年   228篇
  2004年   171篇
  2003年   136篇
  2002年   113篇
  2001年   92篇
  2000年   84篇
  1999年   72篇
  1998年   71篇
  1997年   64篇
  1996年   53篇
  1995年   52篇
  1994年   50篇
  1993年   32篇
  1992年   25篇
  1991年   23篇
  1990年   12篇
  1989年   7篇
  1988年   14篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1954年   2篇
排序方式: 共有4835条查询结果,搜索用时 15 毫秒
101.
The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia, The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However,the opposite interdecadal variation was found in the rainfall anomaly in North China and South China.The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.  相似文献   
102.
利用1960~1999年全国600个站月平均降水资料,对黄河三门峡水库—小浪底水库间的夏季降水总量年际变化进行了统计分析,并应用功率谱诊断方法提取了夏季各月降水的振荡周期。在此基础上,选取了黄河三门峡水库—小浪底水库间降水量多与少的年份,利用NCEP再分析资料研究了其上空的水汽变化以及水汽输送量变化。结果表明,黄河三门峡水库—小浪底水库间降水量多的年份,其上空为较为明显的水汽辐合;降水量比较少的年份,其上空为明显的水汽辐散。选取多雨年(1982年)及少雨年(1997年),结合NCEP再分析资料以及TBB资料,进一步验证了上述结论。  相似文献   
103.
On August 5, 2001, Shanghai was struck by a torrential rainfall due to the passage of a tropical depression (TD). The rainfall intensity has been the strongest in recent 50 years. In this paper, a set of mesoscale re-analyses data and the planetary boundary layer observation from a wind profiler are used to understand the possible mechanism of such a heavy rain. Results show that the outburst of a southerly jet in the lower atmosphere triggered the explosive development of cyclonically vertical vorticity in the region with steep potential temperature surfaces in front of the TD; while the cyclonic vorticity increased notably at higher levels due to the small atmospheric vertical stability of westerly currents in the vicinity of Shanghai. The simultaneous sharp development of cyclonic vorticity at different levels should be the main cause for the torrential rainfall.  相似文献   
104.
The dynamics of vegetation‐driven spatial heterogeneity (VDSH) and its function in structuring runoff and sediment fluxes have received increased attention from both geomorphological and ecological perspectives, particularly in arid regions with sparse vegetation cover. This paper reviews the recent findings in this area obtained from field evidence and numerical simulation experiments, and outlines their implications for soil erosion assessment. VDSH is often observed at two scales, individual plant clumps and stands of clumps. At the patch scale, the local outcomes of vegetated patches on soil erodibility and hydraulic soil properties are well established. They involve greater water storage capacity as well as increased organic carbon and nutrient inputs. These effects operate together with an enhanced capacity for the interception of water and windborne resources, and an increased biological activity that accelerates breakdown of plant litter and nutrient turnover rates. This suite of relationships, which often involve positive feedback mechanisms, creates vegetated patches that are increasingly different from nearby bare ground areas. By this way a mosaic builds up with bare ground and vegetated patches coupled together, respectively, as sources and sinks of water, sediments and nutrients. At the stand scale within‐storm temporal variability of rainfall intensity controls reinfiltration of overland flow and its decay with slope length. At moderate rainfall intensity, this factor interacts with the spatial structure of VDSH and the mechanism of overland flow generation. Reinfiltration is greater in small‐grained VDSH and topsoil saturation excess overland flow. Available information shows that VDSH structures of sources and sinks of water and sediments evolve dynamically with hillslope fluxes and tune their spatial configurations to them. Rainfall simulation experiments in large plots show that coarsening VDSH leads to significantly greater erosion rates even under heavy rainfall intensity because of the flow concentration and its velocity increase. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
105.
Introduction The Great North China, located at longitude 106E to 124E and latitude 31N to 42N, in-cludes three secondary active tectonic blocks, Ordos, Yanshan and North China plain (Figure 1). The geological tectonics of these three secondary blocks is much different from each other. As a stable block with high rigidity, the Ordos block is mostly surrounded by down-faulted basins with an inactive interior since Cenozoic, although the fault zones along its boundary are strongly active wi…  相似文献   
106.
Paired catchment studies have been widely used as a means of determining the magnitude of water yield changes resulting from changes in vegetation. This review focuses on the use of paired catchment studies for determining the changes in water yield at various time scales resulting from permanent changes in vegetation. The review considers long term annual changes, adjustment time scales, the seasonal pattern of flows and changes in both annual and seasonal flow duration curves. The paired catchment studies reported in the literature have been divided into four broad categories: afforestation experiments, deforestation experiments, regrowth experiments and forest conversion experiments. Comparisons between paired catchment results and a mean annual water balance model are presented and show good agreement between the two methodologies. The results highlight the potential underestimation of water yield changes if regrowth experiments are used to predict the likely impact of permanent alterations to a catchment's vegetation. An analysis of annual water yield changes from afforestation, deforestation and regrowth experiments demonstrates that the time taken to reach a new equilibrium under permanent land use change varies considerably. Deforestation experiments reach a new equilibrium more quickly than afforestation experiments. The review of papers reporting seasonal changes in water yield highlights the proportionally larger impact on low flows. Flow duration curve comparison provides a potential means of gaining a greater understanding of the impact of vegetation on the distribution of daily flows.  相似文献   
107.
This study was carried out in the Cuenca de la Independencia, a semi-arid basin in Central Mexico. The objective is to describe the main features of a groundwater flow regime under natural conditions, based on groundwater discharge manifestations. Information obtained from paleoecological, paleontological, archaeological and historical data suggests that, prior to heavy development (starting in the 1950s), the hydrogeologic regime was characterized by a larger groundwater availability in a more humid and colder climate. Manifestations associated to groundwater discharges are springs, lagoons, wetlands, saline soils, chalcedony deposits, phreatophytes, thermalism, and artesianism. The different types of manifestations and their position in the basin indicate the influence of groundwater flow systems hierarchically nested, forming concentric zones at ground level. The groundwater flow regime corresponds to a classical gravity-induced flow system with generation of local, intermediate and regional patterns. Integrating several types of data to establish the flow geometry and its dynamics has proven a useful tool to increase understanding of the original groundwater regimes. This approach can also be applied in other over-exploited semi-arid basins.  相似文献   
108.
On Shikoku Island, which is one of the four main islands of Japan, a large number of large-scale crystalline schist landslides have been revealed and are being monitored by an observation system. Seasonal heavy rainfall is the most active meteorological factor that can threaten the stability of this kind of site-specific landslide. In this paper, on the basis of the study of the rainfall-related behavior of a typical crystalline schist landslide, the Zentoku landslide, by analyzing the precisely and continuously observed piezometric and movement data, a method was developed to quantitatively assess the effect of heavy rainfall on a large-scale landslide. The results indicated that heavy rainfall-induced landslide displacement shows good correlation with the variation of groundwater levels. Variations of groundwater level have been simulated with the use of a tank model. The simulation using this model permits the change in water levels for future rainfall events to be predicted. By combining the predicted results with the empirical relation between displacements and water levels, rainfall-induced landslide movement during extreme rainfall events can be estimated in advance. The effect of heavy rainfall on sliding behavior can be quantified in terms of the change in displacement. Thus warning information or advisories for the local residents can be provided.  相似文献   
109.
固沙林庇护区内降尘特征的初步观测   总被引:2,自引:1,他引:2  
张华  何红  李锋瑞 《干旱区地理》2005,28(2):156-160
采用野外定位实测法,连续两年对科尔沁沙地24龄人工固沙杨树(Populussimonii)林庇护区内4~6月份及强沙尘暴事件中的降尘特征进行了观测研究。结果表明:(1)林地庇护区内4、5月份的降尘量较多,分别为273和437kg/hm2,6月份的降尘量较少,为171kg/hm2。(2)林地中央的滞尘效应在风蚀季节和强沙尘暴天气过程中十分显著。(3)林地庇护区内的降尘中粒径<0.02mm颗粒含量占60.7%,降尘中的全C、全N和速效P含量分别高达1.676%、0.163%和210.66mg/kg,这对风沙土表层土壤的细化和养分的积累具有重要的生态学意义。  相似文献   
110.
Regional models of extreme rainfall must address the spatial variability induced by orographic obstacles. However, the proper detection of orographic effects often depends on the availability of a well‐designed rain gauge network. The aim of this study is to investigate a new method for identifying and characterizing the effects of orography on the spatial structure of extreme rainfall at the regional scale, including where rainfall data are lacking or fail to describe rainfall features thoroughly. We analyse the annual maxima of daily rainfall data in the Campania region, an orographically complex region in Southern Italy, and introduce a statistical procedure to identify spatial outliers in a low order statistic (namely the mean). The locations of these outliers are then compared with a pattern of orographic objects that has been a priori identified through the application of an automatic geomorphological procedure. The results show a direct and clear link between a particular set of orographic objects and a local increase in the spatial variability of extreme rainfall. This analysis allowed us to objectively identify areas where orography produces enhanced variability in extreme rainfall. It has direct implications for rain gauge network design criteria and has led to promising developments in the regional analysis of extreme rainfall. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号