首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1111篇
  免费   265篇
  国内免费   132篇
测绘学   42篇
大气科学   123篇
地球物理   667篇
地质学   284篇
海洋学   167篇
天文学   19篇
综合类   29篇
自然地理   177篇
  2024年   1篇
  2023年   7篇
  2022年   30篇
  2021年   44篇
  2020年   48篇
  2019年   41篇
  2018年   45篇
  2017年   32篇
  2016年   38篇
  2015年   41篇
  2014年   51篇
  2013年   35篇
  2012年   52篇
  2011年   64篇
  2010年   45篇
  2009年   80篇
  2008年   84篇
  2007年   80篇
  2006年   84篇
  2005年   83篇
  2004年   67篇
  2003年   42篇
  2002年   35篇
  2001年   42篇
  2000年   34篇
  1999年   27篇
  1998年   33篇
  1997年   25篇
  1996年   28篇
  1995年   38篇
  1994年   15篇
  1993年   24篇
  1992年   18篇
  1991年   17篇
  1990年   30篇
  1989年   16篇
  1988年   12篇
  1987年   5篇
  1986年   8篇
  1984年   5篇
  1982年   1篇
  1954年   1篇
排序方式: 共有1508条查询结果,搜索用时 15 毫秒
91.
92.
3-D S-waveQ structure in Jiashi earthquake region is inverted based on the attenuation of seismic waves recorded from earthquakes in this region in 1998 by the Research Center of Exploration Geophysics (RCEG), CSB, and a rough configuration of deep crustal faults in the earthquake region is presented. First, amplitude spectra of S-waves are extracted from 450 carefully-chosen earthquake records, called observed amplitude spectra. Then, after instrumental and site effect correction, theoretical amplitude spectra are made to fit observed amplitude spectra with nonlinear damped least-squares method to get the observed travel time overQ, provided that earthquake sources conform to Brune’s disk dislocation model. Finally, by 3-D ray tracing method, theoretical travel time overQ is made to fit observed travel time overQ with nonlinear damped least-squares method. In the course of fitting, the velocity model, which is obtained by 3-D travel time tomography, remains unchanged, while onlyQ model is modified. When fitting came to the given accuracy, the ultimateQ model is obtained. The result shows that an NE-trending lowQ zone exists at the depths of 10–18 km, and an NW-trending lowQ zone exists at the depths of 12–18 km. These roughly coincide with the NE-trending and the NW-trending low velocity zones revealed by other scientists. The difference is that the lowQ zones have a wider range than the low velocity zones. Foundation item: Joint Seismological Science Foundation of China (957-07-414) and State Key Basic Research Development and Programming Project (95-13-02-02). Contribution No. RCEG200105, Research Center of Exploration Geophysics, China Seismological Bureau.  相似文献   
93.
In recent years, more and more studies are focused on the performance in seismic design instead of the strength of structures. People have realized that the structure deformation (displacement) can describe the damage more properly and directly than the strength (force). The displacement design spectra need to be constructed within more wide range of the period and the damping for the displacement-based seismic design.  相似文献   
94.
An approach to generate artificial earthquakeaccelerograms on hard soil sites is presented. Eachtime-history of accelerations is considered as arealization of a non-stationary gaussian stochasticprocess, with statistical parameters depending onmagnitude and source-to-site distance. In order tolink the values of these parameters for each groundmotion record with the corresponding magnitude andsource-to-site distance, semi-empirical functionalrelations called generalized attenuationfunctions are determined. The set of realground-motion time histories used to obtain thesefunctions correspond to shocks generated at differentsources and recorded at different sites in thevicinity of the southern coast of Mexico. The resultsshow significant dispersion in the parameters of themodel adopted, which reflect that associated with thereal earthquakes included in the sample employed.The problem of conditional simulation of artificialacceleration time histories for prescribed intensitiesis briefly presented, but its detailed study is leftfor a companion paper. The criteria and modelsproposed are applied to generate two families ofartificial acceleration records for recurrenceintervals of 100 and 200 years at a specific sitelocated in the region under study. The results shownin this article correspond to acceleration timehistories recorded on firm ground for earthquakesgenerated at the subduction zone that runs along thesouthern coast of Mexico, and cannot be generalized tocases of earthquakes generated at other sources orrecorded at other types of local conditions. Thismeans that the methods and functional forms presentedhere are applicable to these other cases, but thevalues of the parameters that characterize thosefunctions may differ from those presented here.  相似文献   
95.
Common variogram models, such as spherical or exponential functions, increase monotonically with increasing lag distance. On the other hand, a hole-effect variogram typically exhibits sinusoidal waves that form peaks and troughs, thereby conveying the cyclicity of the underlying phenomenon. In order to incorporate this cyclicity into a stochastic simulation, hole effects in the experimental variogram must be fitted appropriately. In this paper, we recommend use of several multiplicative-composite variogram models to fit hole-effect experimental variograms. These consist of a cosine function to provide wavelength and phase of cyclicity, multiplied by a monotonic model (e.g., spherical) to attenuate amplitudes of the cyclical peaks and troughs. These composite models can successfully fit experimental lithology-indicator variograms that contain a range of cyclicities, although experimental variograms with poor cyclicity require special considerations.  相似文献   
96.
Uppermost Jurassic limestones of the South‐East Basin (France) are organized into four facies associations that were deposited in four distinct zones: (1) peritidal lagoonal limestones; (2) bioclastic and reefal limestones; (3) pelagic lime mudstones; (4) lime mudstones/calcarenites/coarse breccias. Calcarenite deposits of zone 4 exhibit sedimentary structures that are diagnostic of deposition under wave‐induced combined flow. In subzone 4a, both vertical and lateral transitions from lime mudstone/calcarenite to breccia indicate in situ brecciation under wave‐cyclic loading. Breccias were produced by heterogeneous liquefaction of material previously deposited on the sea floor. Deposits in subzone 4a record relatively long periods (>400 kyr) of sedimentation below wave base, alternating with periods of deposition under wave‐induced currents and periods of in situ deformation. In this zone, storm waves were attenuated by wave–sediment interaction, and wave energy was absorbed by the deformation of soft sediment. With reference to present‐day wave attenuation, water depths in this zone ranged between 50 and 80 m. Landwards of the attenuation zone, in zone 3, storm waves were reduced to fair‐weather wave heights. Storm wave base was not horizontal and became shallower landwards. As a consequence, water depth and wave energy were not linearly related. On a small area of the seaward edge of subzone 4a, cobbles were removed by traction currents and redeposited in subzone 4b. There, they formed a 100‐m‐thick wedge, which prograded over 3 km and was built up by the stacking of 5‐ to 20‐m‐thick cross‐stratified sets of coarse breccia. This wedge records the transport and redeposition of cobbles by a high‐velocity unidirectional component of a combined flow. The increase in flow velocity in a restricted area is proposed to result from flow concentration in a channel‐like structure of the downwelling in the gulf formed by the basin. In more distal subzone 4c, the hydrodynamic effect of wave‐induced currents was quasi‐permanent, and brecciation by wave–sediment interaction occurred only episodically. This indicates that, seawards of the attenuation zone, hydrodynamic storm wave base was deeper than mechanical storm wave base. Uppermost Jurassic carbonates were deposited and soft‐sediment deformed on a hurricane‐dominated ramp of very gentle slope and characterized by a zone of storm wave degeneration, located seawards of a zone of sedimentation below wave base.  相似文献   
97.
SOURCE RADIATION AND RESPONSES OF WAVE PROPAGATION   总被引:2,自引:0,他引:2  
Recordings of seismic waves propagating from earthquake source to a station at the earth's surface are a system response function.The convolution operator in time domain can be simplified as a multiplication operator in frequency domain.We discuss in frequency domain the separation of source,path and site effects for global scaling of earthquake source radiation.Also discussed are source scaling model,faulting mechanism,and the H/V inversion problems with crustal and near surface structures.Gross features of apparent source spectra appear to be not much region-dependent although there may be difference between tectonic styles within a region of tectonic mixture for which we need further study as data accumulate.Vertical spectra may be a better approach to approximate source radiation,as it has less crustal amplification effects than horizontal spectra.The H/V ratio is evidently a comprehensive indicator of amplification effects from near surface to deep structure.This gives it potential as an inversion tool to deduce site crustal structure.  相似文献   
98.
The brightness temperatures of the Microwave sensor MSMR (Multichannel Scanning Microwave Radiometer) launched in May 1999 onboard Indian Oceansat-1 IRS-P4 are used to develop a direct retrieval method for latent heat flux by multivariate regression technique. The MSMR measures the microwave radiances at 8 channels at frequencies of 6.6, 10.7, 18 and 21 GHz at both vertical and horizontal polarizations. It is found that the surface LHF (Latent Heat Flux) is sensitive to all the channels. The coefficients were derived using the National Centre for Environmental Prediction (NCEP) reanalysis data of three months: July, September, November of 1999. The NCEP daily analyzed latent heat fluxes and brightness temperatures observed by MSMR were used to derive the coefficients. Validity of the derived coefficients was checked within situ observations over the Indian Ocean and with NCEP analyzed LHF for global points. The LHF derived directly from the MSMR brightness temperature (Tb) yielded an accuracy of 35 watt/m2. LHF was also computed by applying bulk formula using the geophysical parameters extracted from MSMR. In this case the errors were higher apparently due to the errors involved in derivation of the geophysical parameters.  相似文献   
99.
兰州冬季气溶胶光学特性的参数化   总被引:9,自引:1,他引:9  
田文寿  陈长和 《大气科学》1996,20(2):235-242
兰州冬季气溶胶的谱分布用双谱模式拟合,即Junge谱加Deirmendjian谱;气溶胶的平均折射率为1.549-0.1i;气溶胶浓度随高度的分布根据天气条件取为高斯、均匀、指数分布三种类型。以此为基础,计算出兰州冬季气溶胶光学厚度的平均值。 经实测的气溶胶光学厚度与本文的计算值比较后发现,我们的参数化方案基本上是成功的。  相似文献   
100.
A total of 11 earthquakes with 15 Rayleigh wave paths, recorded at 11 broadband digital PASSCAL seismometers installed in the Tibet Plateau by the Sino-U.S. joint research group, were used to determine the phase velocity and attenuation coefficient of surface waves in periods of 10–130 s. The average shear wave velocity and quality factor {ie271-1} structures in the crust and upper mantle were obtained in this region. The result shows the average {ie271-2} is low and there exists a high attenuation ({ie271-3}=93–141) layer in the crust. The depth range of the low {ie271-4} value layer (16–42 km) is consistent with the range of low velocity layer (21–51 km) in the crust. Below 63 km in the lower crust, {ie271-5} decreases with depth from 114 to 34 at depth of 180 km. The low shear wave velocity and low value of {ie271-6} at the same depth range in the crust indicate that the rocks in the range is probably melted or partially melted. According to the shear wave velocity structure, the average thickness of the crust is about 71 km and a clear velocity discontiniuty appears at the depth of 51 km. The low-velocity zone (4. 26 km/s) at depth of 96–180 km may be corresponding to the asthenosphere. Contribution No. 96A0047, Institute of Geophysics, SSB, China. This study was supported by the National Natural Science Foundation of China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号