首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   53篇
  国内免费   102篇
测绘学   4篇
大气科学   104篇
地球物理   144篇
地质学   200篇
海洋学   54篇
天文学   4篇
综合类   8篇
自然地理   23篇
  2023年   2篇
  2022年   13篇
  2021年   10篇
  2020年   9篇
  2019年   11篇
  2018年   9篇
  2017年   15篇
  2016年   15篇
  2015年   10篇
  2014年   22篇
  2013年   24篇
  2012年   12篇
  2011年   20篇
  2010年   25篇
  2009年   29篇
  2008年   35篇
  2007年   39篇
  2006年   27篇
  2005年   26篇
  2004年   22篇
  2003年   18篇
  2002年   19篇
  2001年   14篇
  2000年   13篇
  1999年   14篇
  1998年   14篇
  1997年   8篇
  1996年   7篇
  1995年   6篇
  1994年   10篇
  1993年   5篇
  1992年   5篇
  1991年   7篇
  1990年   9篇
  1989年   4篇
  1988年   5篇
  1986年   4篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
排序方式: 共有541条查询结果,搜索用时 15 毫秒
131.
青藏高原草地生态系统碳通量研究进展   总被引:7,自引:3,他引:4  
青藏高原拥有我国面积最大的天然草地,区域内生态系统碳通量的长期定位观测研究具有重要意义.在总结生态系统碳通量主要研究方法基础上,对青藏高原不同植被类型碳循环的源、汇效应、时空变化及其与影响因子关系等研究领域所取得的重要进展进行了综合评述.现有研究表明,不同植被类型间CO2通量的季节变化、年际变化、交换量和碳源汇特征等存在明显差异,光合有效辐射、温度、降水、土壤水分和叶面积指数等是影响碳通量变化的主要驱动因子.最后,结合当前青藏高原地区生态系统碳通量研究的现实与需要,探讨了通量观测所面临的主要科学问题及解决途径.未来对青藏高原碳循环关键过程的研究工作还需要多尺度、长期生态实验和CO2通量观测数据支持,同时以此为基础发展新的数据处理、分析和跨尺度机理模拟方法,建立青藏高原生态系统碳循环模型.  相似文献   
132.
The Daenam mine, which produced over 9250 tons of iron oxide ore from 1958 to 1962, is situated in the Early Cretaceous Yeongyang subbasin of the Gyeongsang basin. It consists of two lens-shaped, hematite-bearing quartz veins that occur along faults in Cretaceous leucocratic granite. The hematite-bearing quartz veins are mainly composed of massive and euhedral quartz and hematite with minor amounts of pyrite, pyrrhotite, mica, feldspar and chlorite.Fluid inclusions in quartz can be divided into three main types: CO2-rich, CO2–H2O, and H2O-rich. Hydrothermal fluids related to the formation of hematite are composed of either H2O–CO2–NaCl ± CH4 (homogenization temperature: 262–455 °C, salinity <7 eq. wt.% NaCl) or H2O–NaCl (homogenization temperature: 182–266 °C, and salinity <5.1 eq. wt.% NaCl), both of which evolved by mixing with deeply circulating meteoric water. Hematite from the quartz veins in the Daenam mine was mainly deposited by unmixing of H2O–CO2–NaCl ± CH4 fluids with loss of the CO2 + CH4 vapor phase and mixing with downward percolating meteoric water providing oxidizing conditions.  相似文献   
133.
The hydrothermal system of Saint-Gervais-les-Bains, France is located in a south western low-elevation point of the Aiguilles Rouges crystalline Massif. The crystalline rocks are not directly outcropping in the studied area but certainly exist beyond 300 m depth. Uprising waters are pumped from two different aquifers below the Quaternary deposits of the Bon Nant Valley. In the Lower Trias-Permian aquifer crossed by De Mey boreholes (27–36 °C), the ascending Na-SO4 and high-Cl thermal water from the basement (4.8 g/L) is mostly mixed by a Ca-SO4 and low-Cl cold water circulating in the autochthonous cover of the Aiguilles Rouges Basement. The origin of the saline thermal water probably results from infiltration and circulation in the basement until it reaches deep thrust faults with leaching of residual brines or fluid inclusions at depth (Cl/Br molar ratio lower than 655). The dissolution of Triassic halite (Cl/Br > 1000) is not possible at Saint-Gervais-les-Bains because the Triassic cold waters have a low-Cl concentration (< 20 mg/L). Water–rock interactions occur during the upflow via north–south strike-slip faults in the basement and later on in the autochthonous cover. For the De Mey Est borehole, gypsum dissolution is occurring with cationic exchanges involving Na, as well as low-temperature Mg dissolution from dolomite in the Triassic formations. The aquifer of imbricated structures (Upper-Middle Trias) crossed by the Lépinay well (39 °C) contains thermal waters, which are strongly mixed with a low-Cl water, where gypsum dissolution also occurs. The infiltration area for the thermal end-member is in the range 1700–2100 m, close to the Lavey-les-Bains hydrothermal system corresponding to the Aiguilles Rouges Massif. For the Ca-SO4 and low-Cl end-member, the infiltration area is lower (1100–1300 m) showing circulation from the Mont Joly Massif. The geothermometry method indicates a reservoir temperature of probably up to 65 °C but not exceeding 100 °C.  相似文献   
134.
135.
The 161 ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60 km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3 km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.  相似文献   
136.
用冷台冻滴和2m3云室试验相结合的方法,研究了云中可溶性物质对冰核化的影响。实验结果表明,一般云中观测到的可溶性盐类气溶胶(如NaCl、(NH4)2SO4等)在温度高于-18℃时不易成为冰核。而高浓度的可溶性铵盐(如(NH4)2SO4,NHCl等)则能显著提高AgI的成冰温度。(NH4)2SO4能使AgI成冰晶数在-10℃提高2个量级,-6℃提高约1个量级。该结果对人工催化技术有一定指导意义。  相似文献   
137.
A detailed high resolution survey of a small region (68 × 68 km) of the Subtropical Front south of Australia over a period of 14 days is used to study the interaction between the mixed layer and the permanent frontal structure underneath during summer conditions. The front extends through the mixed layer as a salinity front, while its temperature structure is modified by seasonal warming. Wind-driven movement of the mixed layer combines with the short-time development of indentations and filaments in the front to produce some degree of decoupling between the mixed layer and the underlying structure, and the front is not always found at the same location in and below the mixed layer. Intrusions and parcels of distinct water properties are found just below the mixed layer, produced as a result of the relative movement of the front in and below the mixed layer. These parcels are typically 10 km in width and 10–50 m in depth. Successive surveys of the front with a time separation of 2 days showed that these features persist over at least 1 week. Large scale surveys of the front show that parcels are ubiquitous along the Subtropical Front over a distance of several hundred kilometres. The results suggest that any study aimed at understanding the intricate interaction between the mixed layer and the layers below in oceanic fronts will have to address wind-driven dynamics and frontal dynamics together.This revised version was published online February 2005 with corrections to figures. Unfortunately the figures were reproduced in black and white and in the new version they are in color.  相似文献   
138.
Hekla and Torfajökull are active volcanoes at a rift–transform junction in south Iceland. Despite their location next to each other they are physically and geologically very different. Hekla is an elongate stratovolcano, built mainly of basaltic andesite. Torfajökull is a prominent rhyolitic centre with a 12-km-diameter caldera and extensive geothermal activity. The scope of this study is to examine the propagation of body waves of local earthquakes across the Hekla–Torfajökull area and look for volumes of anomalous S-wave attenuation, which can be evidence of magma chambers. So far the magma chamber under Hekla has been modelled with various geophysical means, and its depth has been estimated to be 5–9 km. A data set of 118 local earthquakes, providing 663 seismic rays scanning Hekla and Torfajökull, was used in this study. The major part, 650 seismograms, did not show evidence for S-wave attenuation under these volcanoes. Only six seismograms had clear signs of S-wave attenuation and seven seismograms were uncertain cases. The data set samples Hekla well at depths of 8–14 km, and south part of it also at 4–8 km and 14–16 km. Western Torfajökull is sampled well at depths of 4–14 km, eastern and southern Torfajökull at 6–12 km. Conclusions cannot be drawn regarding the existence of magma beyond these depth ranges. Also, magma volumes of smaller dimensions than about 800 m cannot be detected with this method. If a considerable molten volume exists under Hekla, it must be located either above 4 km or below 14 km. The former possibility seems unlikely, because Hekla lacks geothermal activity and persistent seismicity, usually taken as expressions of a shallow magma chamber. An aseismic volume with a diameter of 4 km at the depth of 8 km in the west part of Torfajökull has been inferred in earlier studies and interpreted as evidence for a cooling magma chamber. Our results indicate that this volume cannot be molten to a great extent because S-waves travelling through it are not attenuated. Intense geothermal activity and low-frequency earthquakes are possibly signs of magma in the south part of Torfajökull, but a magma chamber was not detected there in the areas sampled by this study.Editorial responsibility: T. Druitt  相似文献   
139.
Chemical composition and stable carbon isotopic studies were undertaken for 27 gas samples from deep strata of the Xujiaweizi Depression in the Songliao Basin to investigate their origin. Gas molecular and carbon isotopic compositions show great variety. Methane is the main component for all studied samples and its content ranges from 57.4% to 98.2% with an average of 90.1%. Gas wetness ranges from 0.8% to 16.7% with an average of 2.7%. The main non-hydrocarbon gases are carbon dioxide and nitrogen with an average of 4.0% and 3.2%, respectively. Carbon isotope data suggest that these deep strata gases are mainly coal-type gases mixed with minor amounts of associated (oil-type) gases. Coal-type gases are characterized by heavier carbon isotopic values and drier chemical compositions. These gases were generated from the Lower Cretaceous Shahezi Formation coals interbedded shales with type III kerogen during the postmature stage of hydrocarbon generation. Oil-type gases are characterized by lighter carbon isotope and higher wetness, which were generated from the Lower Cretaceous shales with type II kerogen in the shallow strata during the early mature stage of hydrocarbon generation. Mixing of two different gases causes unusual carbon isotopic distribution patterns, with lighter isotopic values in higher numbered carbons in most gases. The discovery of coal-type gases in the Songliao Basin provides new prospects for the exploration in this region.  相似文献   
140.
赵扬锋  潘一山  于海军 《岩土力学》2004,25(Z2):347-350
采用应变损伤模型对圆形洞室矿震的发生进行了解析分析,得到了发生矿震的洞室临界塑性区深度和临界作用力,得出损伤内变量k0,kc是决定圆形洞室矿震发生的重要参数.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号