首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20738篇
  免费   2460篇
  国内免费   4231篇
测绘学   879篇
大气科学   2388篇
地球物理   3101篇
地质学   8029篇
海洋学   3632篇
天文学   5229篇
综合类   1055篇
自然地理   3116篇
  2024年   73篇
  2023年   243篇
  2022年   612篇
  2021年   673篇
  2020年   720篇
  2019年   921篇
  2018年   681篇
  2017年   717篇
  2016年   787篇
  2015年   865篇
  2014年   1172篇
  2013年   1333篇
  2012年   1255篇
  2011年   1365篇
  2010年   1341篇
  2009年   1669篇
  2008年   1576篇
  2007年   1551篇
  2006年   1425篇
  2005年   1222篇
  2004年   1063篇
  2003年   893篇
  2002年   781篇
  2001年   696篇
  2000年   655篇
  1999年   569篇
  1998年   443篇
  1997年   337篇
  1996年   273篇
  1995年   226篇
  1994年   214篇
  1993年   210篇
  1992年   161篇
  1991年   117篇
  1990年   96篇
  1989年   75篇
  1988年   73篇
  1987年   32篇
  1986年   46篇
  1985年   53篇
  1984年   34篇
  1983年   40篇
  1982年   36篇
  1981年   21篇
  1980年   18篇
  1979年   6篇
  1978年   17篇
  1977年   32篇
  1976年   3篇
  1972年   2篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
This paper integrates random field simulation of soil spatial variability with numerical modeling of coupled flow and deformation to investigate consolidation in spatially random unsaturated soil. The spatial variability of soil properties is simulated using the covariance matrix decomposition method. The random soil properties are imported into an interactive multiphysics software COMSOL to solve the governing partial differential equations. The effects of the spatial variability of Young's modulus and saturated permeability together with unsaturated hydraulic parameters on the dissipation of excess pore water pressure and settlement are investigated using an example of consolidation in a saturated‐unsaturated soil column because of loading. It is found that the surface settlement and the pore water pressure profile during the process of consolidation are significantly affected by the spatially varying Young's modulus. The mean value of the settlement of the spatially random soil is more than 100% greater than that of the deterministic case, and the surface settlement is subject to large uncertainty, which implies that consolidation settlement is difficult to predict accurately based on the conventional deterministic approach. The uncertainty of the settlement increases with the scale of fluctuation because of the averaging effect of spatial variability. The effects of spatial variability of saturated permeability ksat and air entry parameters are much less significant than that of elastic modulus. The spatial variability of air entry value parameters affects the uncertainties of settlement and excess pore pressure mostly in the unsaturated zone. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
992.
The problem of predicting the geometric structure of induced fractures is highly complex and significant in the fracturing stimulation of rock reservoirs. In the traditional continuous fracturing models, the mechanical properties of reservoir rock are input as macroscopic quantities. These models neglect the microcracks and discontinuous characteristics of rock, which are important factors influencing the geometric structure of the induced fractures. In this paper, we simulate supercritical CO2 fracturing based on the bonded particle model to investigate the effect of original natural microcracks on the induced‐fracture network distribution. The microcracks are simulated explicitly as broken bonds that form and coalesce into macroscopic fractures in the supercritical CO2 fracturing process. A calculation method for the distribution uniformity index (DUI) is proposed. The influence of the total number and DUI of initial microcracks on the mechanical properties of the rock sample is studied. The DUI of the induced fractures of supercritical CO2 fracturing and hydraulic fracturing for different DUIs of initial microcracks are compared, holding other conditions constant. The sensitivity of the DUI of the induced fractures to that of initial natural microcracks under different horizontal stress ratios is also probed. The numerical results indicate that the distribution of induced fractures of supercritical CO2 fracturing is more uniform than that of common hydraulic fracturing when the horizontal stress ratio is small.  相似文献   
993.
994.
The aim of this paper is to analyse the performance of a finite element formulation usable for predicting the mechanical consequences of frost effects on porous media. It considers the characteristics of porous media and how the frost action can be assessed. The problem is then separated into two parts: thermal and poromechanical calculations. The constitutive equations developed in the framework of poromechanics are presented and the implementation in a usual finite element poroelasticity formulation based on Zuber's method is adopted. An analysis of the time‐step influence on the convergence rate is given and leads us to propose a simple method in order to obtain objectivity of the finite element response and avoid over‐long calculations. Frost effect simulations are carried out on real porous media (two fired clays) as a case study. Although the experimental behaviour of the porous media subjected to frost action is in accordance with some observations, the calculated strains appear to be overestimated compared with measurements. The problem could be largely attributable to the difficulty of assessing permeability evolution during frost development. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
995.
In organic soils, hydraulic conductivity is related to the degree of decomposition and soil compression, which reduce the effective pore diameter and consequently restrict water flow. This study investigates how the size distribution and geometry of air‐filled pores control the unsaturated hydraulic conductivity of peat soils using high‐resolution (45 µm) three‐dimensional (3D) X‐ray computed tomography (CT) and digital image processing of four peat sub‐samples from varying depths under a constant soil water pressure head. Pore structure and configuration in peat were found to be irregular, with volume and cross‐sectional area showing fractal behaviour that suggests pores having smaller values of the fractal dimension in deeper, more decomposed peat, have higher tortuosity and lower connectivity, which influences hydraulic conductivity. The image analysis showed that the large reduction of unsaturated hydraulic conductivity with depth is essentially controlled by air‐filled pore hydraulic radius, tortuosity, air‐filled pore density and the fractal dimension due to degree of decomposition and compression of the organic matter. The comparisons between unsaturated hydraulic conductivity computed from the air‐filled pore size and geometric distribution showed satisfactory agreement with direct measurements using the permeameter method. This understanding is important in characterizing peat properties and its heterogeneity for monitoring the progress of complex flow processes at the field scale in peatlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
996.
Abstract

Abstract A complete regional analysis of daily precipitations is carried out in the southern half of the province of Quebec, Canada. The first step of the regional estimation procedure consists of delineating the homogeneous regions within the area of study and testing for homogeneity within each region. The delineation of homogeneous regions is based on using L-moment ratios. A simulation-based testing of statistical homogeneity allows one to verify the inter-site variability. The second step of the procedure deals with the identification of the regional distribution and the estimation of its parameters. The General Extreme Value (GEV) distribution was identified as an appropriate parent distribution. This distribution has already been recommended by several previous research studies for regional frequency analysis of precipitation extremes. The parameters of the GEV distribution are estimated based on the computation of the regional L-CV, L-CS and the mean of annual maximal daily precipitations. The third step consists of the estimation of precipitation quantiles corresponding to various return periods. The final procedure allows for the estimation of these quantiles at sites where no precipitation information is available. The use of a jack-knife resampling procedure with data from the province of Quebec allows one to demonstrate the robustness and efficiency of the regional estimation procedure. Values of the root mean square error were below 10% for a return period of 20 years, and 20% for a return period of 100 years.  相似文献   
997.
Abstract

Some unique coupled wind–water erosion processes exist in the desert-loess transitional zone in the middle Yellow River basin. Based on data from 40 stations on 29 rivers, a study was made on the influence of such processes on suspended sediment grain-size characteristics of the tributaries of the Yellow River. Results show that the percentage of >0.05-mm grain size decreases with the increased annual mean precipitation, but increases with the increase in the annual mean number of sand-dust storm days. The percentage of <0.01-mm grain size increases with the increase in the annual mean precipitation, but decreases with the increase in the annual number of sand-dust storm days. Based on annual mean data from 40 stations, multiple regression equations were established between the percentages of >0.05-mm grain size (r >0.05) and <0.01-mm grain size (r <0.01), annual mean precipitation (P m) and annual mean number of sand-dust storm days (D ss). On this basis, the relative contributions of the variations in D ss and P m to the variation in r >0.05 and r <0.01 were estimated. The results indicate that the variation in sand-dust storm frequency exerts greater influences on the variation in grain-size characteristics of suspended load than does the variation in annual mean precipitation. With the increase in the coupled wind–water processes index, expressed by P m/D ss, the percentage of >0.05-mm grain size in suspended sediment decreases and the percentage of <0.01-mm grain size increases. With the variation in P m/D ss, different combinations of r >0.05 with r <0.01 appear, which have some influence on the formation of hyperconcentrated flows. There exist some optimal ratios of coarse to fine fractions in suspended sediment that make sediment concentrations of hyperconcentrated flows the highest. The optimal r >0.05/r <0.01 value is related to some range of the index P m/D ss. When the P m/D ss index falls in this range, the optimum combination of relative coarse with fine sediments in the suspended load appears, and thus results in the peak values of sediment concentration.  相似文献   
998.
Abstract

Abstract The knowledge of the precipitation phase, solid or liquid, is important in high mountains, in order to use models of water and energy balances. During an experiment led in the Bolivian Andes, a complete weather station was installed at an altitude close to 4800 m, including two raingauge recorders, the first one with added antifreeze and oil, based on weight measurement, and the other one with tipping buckets. This device allowed a realistic partition of the liquid and solid phases in this region of tropical mountains, where the observed snow pack at the ground level is strongly influenced by the extremely high solar radiation and where the snow cover is ephemeral. The automation of the ?raingauges? method, compared with several other classical methods, shows satisfactory results.  相似文献   
999.
1000.
Desert pavements (DPs) are critical for maintaining ecological stability and promoting near-surface hydrological cycling in arid regions. However, few studies have focused on eco-hydrological processes of DPs in the ecological systems of fluvial fans. Although DP surfaces appear to be barren and flat, we found that the surfaces are characterized by surface mosaic patterns of desert pavement (mosaic DP) and bare ground (mosaic BG). We investigated the effects of mosaic DP on water infiltration and vegetation distribution at six sites in fluvial fans (one on a hillside and five within the sectors of fans) along a southwest belt transect in northern Linze County, in the central Hexi Corridor (China). We found significant differences in mosaic DP between the hillside and sector sites in terms of pavement thickness and vesicular horizon thickness (Av thickness), particle composition, and bulk density, although significant differences were absent for mass soil water content, gravel coverage, and surface gravel size. The mosaic DP inhibited water infiltration by the pavement layer, where the sorptivity (S), initial infiltration rate (iint), steady-state infiltration rate (isat) and infiltration time (T) averaged 1.19 cm/min-0.5, 0.64 cm/min, 0.13 cm/min and 12.76 min, respectively. Where the pavement layer was scalped, the S, iint, and isat increased by 0.27 cm/min-0.5, 0.52 cm/min, and 0.40 cm/min, respectively, and the T reduced by 7.42 min. Water infiltration was mainly controlled by the pavement layer thickness (+), Av thickness (−), surface gravel coverage (−), fine earth (+) and fine gravel (−) in the pavement layer. The DP surfaces only had a sparse covering of shrubs, but an abundance of herbs. Few shrubs were present on the mosaic DP, but a greater number of shrubs and herbs grew on the mosaic BG. It can be concluded that DPs can maintain vegetation stability for different surface mosaic patterns. This study deepens our understanding of the eco-hydrological cycle of DP landscapes in arid regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号