首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2128篇
  免费   24篇
  国内免费   146篇
测绘学   83篇
大气科学   124篇
地球物理   450篇
地质学   1074篇
海洋学   157篇
天文学   38篇
综合类   43篇
自然地理   329篇
  2024年   16篇
  2023年   41篇
  2022年   52篇
  2021年   81篇
  2020年   178篇
  2019年   100篇
  2018年   130篇
  2017年   192篇
  2016年   130篇
  2015年   145篇
  2014年   243篇
  2013年   402篇
  2012年   243篇
  2011年   29篇
  2010年   30篇
  2009年   31篇
  2008年   30篇
  2007年   23篇
  2006年   28篇
  2005年   26篇
  2004年   32篇
  2003年   22篇
  2002年   29篇
  2001年   14篇
  2000年   12篇
  1999年   12篇
  1998年   9篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
排序方式: 共有2298条查询结果,搜索用时 78 毫秒
991.
The Twelve Mile Bay assemblage (TMBa) forms the high-strain interior of the Twelve Mile Bay shear zone (TMBsz), a major ductile decollement zone within the western Canadian Grenville orogen. Metasupracrustal gneiss within the TMBa preserves evidence for an early granulite facies (?10–11 kbar and ?840°C) metamorphism overprinted by amphibolite facies (?5–7 kbar and ?650°C) assemblages that define the high-strain shear zone fabric. U–Pb zircon ages for TMBa samples were determined by LA-ICP-MS. A low-strain amphibolite pod with partially preserved granulite facies assemblage and textures yielded an anchored discordia intercept of 1157 ± 11 Ma and 207Pb/206Pb weighted average of 1146 ± 10 Ma. Three higher strain samples with recrystallized amphibolite facies assemblages all yield younger ages, with 207Pb/206Pb weighted averages of 1125 ± 16, 1110 ± 8, and 1095 ± 17 Ma. Phase equilibrium modelling shows that up to 40 vol.% anatectic melt could have been produced in TMBa pelitic rocks during peak metamorphic conditions, and thus, much of the package likely would have been substantially weakened during the early stages of TMBsz development. Strain apparently continued to accumulate within the TMBa until ca. 1100 Ma, concurrent with pegmatite dike emplacement and hydration along the base of the overlying interior Parry Sound domain (iPSD), perpetuating TMBsz activity during cooling and exhumation to shallower crustal levels. Similarities between the TMBa and the upper parts of the basal PSD (bPSD), in terms of timing and conditions of metamorphism and shearing, as well as structural position relative to the overlying iPSD allochthon, indicate that these units are likely correlative. The composite bPSD–TMBa system appears to have contemporaneously localized strain within the middle orogenic crust during early to middle stages of Grenvillian collision, providing a petrologically constrained mechanism for the long distance transport of mid-crustal nappes predicted in thermal-mechanical models of continental collision for this area.  相似文献   
992.
《International Geology Review》2012,54(10):1261-1279
The eastern Qinling belt is characterized by widespread Mesozoic post-orogenic magmatism and abundant Mo–(Au–Ag) polymetallic mineralization. Most Mo deposits in this belt are genetically related to Mesozoic granitoids. The tectonic context of this close spatial and temporal relationship is still debated. This study reports U–Pb ages and Hf isotopic composition of zircons, major and trace element and Sr–Nd–Pb isotopic composition of the Donggou granite porphyry, host rock to one of the important Mesozoic Mo deposits in this orogen. Based on geochemical results, the Donggou granite porphyry is a silica-supersaturated, high-K metaluminous A-type granite showing enrichment in light REEs, depletion in middle REEs and significant negative Eu, Ba, Nb, Sr, P, and Ti anomalies. Negative initial ?Nd values of??17.0 to??13.2 for whole-rock and negative initial ?Hf values of??19.9 to??7.8 for zircon suggest that the magma was derived from a mixture of Archaean/Proterozoic crustal rocks and mantle-derived or newly added crust. Its Pb isotopic composition is similar to the lower crust of the North China block, but different from superjacent country rocks (Xiong'er and Taihua Groups). Zircon U–Pb dating yields a late Mesozoic emplacement age of 118–117 Ma, identical with the third episode of Mo mineralization in the eastern Qinling–Dabie belt. We postulate that the Donggou Mo-related porphyry granite formed by reworking of North China lower crust with significant input of juvenile material. The magmas formed in an extensional tectonic setting, induced by lithospheric thinning and asthenospheric upwelling beneath eastern China during Cretaceous time.  相似文献   
993.
A series of significant geological changes indicated by deformation, magmatic–metallogenic systems, and the climate and environment occurred in East Asia during Late Jurassic to Early Cretaceous time, but the timing and development of the ‘Yanshan movement’ on the north margin of the North China Craton has not been well-established. Based on the evidence of tectonic deformation and magmatic activity, previous studies resulted in two views of the beginning of the Yanshan movement: Early Jurassic vs. late Middle Jurassic. In this work, the timing of the initial Yanshan movement was investigated by examining the Jurassic Chenjiabangou section in the Ningwu–Jingle basin overlying the north-central part of the North China Craton. The timing of the initial Yanshan movement was constrained by restoration of stream flow directions, determination of boundaries of sedimentary cycles, identification of heavy mineral assemblages in clastic rocks, quantification of changes in chemical compositions, and zircon U–Pb isotope dating. The results indicate that the basal conglomerates of the Middle Jurassic Yungang Formation (Bathonian) mark the beginning of the Yanshan movements. Evidence supporting this conclusion includes the following. (1) The switch from transgressive lacustrine deposition to regressive lacustrine deposition in the Yungang Formation sedimentary succession indicates a change from extension to compression, possibly reflecting uplift. (2) Early-stage clastic rocks rich in quartz and feldspar are replaced by feldspar detritus in late-stage clastic rocks; the heavy mineral assemblage dominated by zircon at the early stages changed to garnet-dominated assemblage upsection. Moreover, the concentrations of CaO, MgO, CO2, and Fe2O3 + FeO and the Fe2O3/FeO ratio changed abruptly near the basal conglomerates of the Middle Jurassic Yungang Formation, suggesting increased denudation. (3) Conglomerates at the bottom of the Middle Jurassic Yungang Formation were deposited approximately 168 million years ago, as inferred from the age of zircons in tuffaceous micrite (160.6 ± 0.55 Ma) at the bottom of the Upper Jurassic Tianchihe Formation (Oxfordian) and the age of zircons in pyroclastic rocks (179.2 ± 0.79 Ma) in the Lower Jurassic Yongdingzhuang Formation (Toarcian). These lines of evidence indicate that initial Jurassic Yanshan movement began 168 million years ago during Middle Jurassic time.  相似文献   
994.
《International Geology Review》2012,54(16):1959-1977
The Wudaogou plutonic complex is located in the eastern Yanbian area of Jilin Province and consists of hornblende gabbros, gabbroic diorites, and quartz diorites that contain abundant dioritic microgranular xenoliths. Zircon U–Pb dating of gabbroic and quartz diorites yielded weighted mean 206Pb/238Pb ages of 263.5 ± 5.1 Ma (N = 12, mean squared weighted deviation (MSWD) = 0.78, probability = 0.66) and 262.0 ± 5.6 Ma (N = 10, MSWD = 0.50, probability = 0.87), respectively. These units are characterized by high Na2O/K2O (0.33–0.77) ratios and Al2O3 (15.05–18.91 wt%) concentrations and are large ion lithophile element (LILE) (light rare earth element (LREE), Rb, Ba, K, etc.) enriched and high field strength element (HFSE) (Nb, Ta, P, Ti) depleted. They also have initial 87Sr/86Sr values of 0.70192–0.70420 and ?Nd(t) values of +1.9 to +4.7 with two-stage model ages (TDM2) of 653–878 Ma. These characteristics indicate that these rocks formed from calc–alkaline magmas derived from partial melting of a mixture of juvenile crust formed attending the Neoproterozoic subduction of the Palaeo-Asian oceanic crust and lower crustal material. The dioritic xenoliths have whole-rock compositions that are similar to their host rocks, but with negative ?Nd(t) values (?1.6 to ?4.3) and older TDM2 ages (1166–1382 Ma), further indicating that this magmatic event involved older crustal material. Combining these data with existing knowledge of the crustal evolution of this area, we conclude that this complex formed in a post-collisional extensional setting during closure of the Palaeo-Asian Ocean.  相似文献   
995.
ABSTRACT

The La Tinta mélange is a small but singular ultramafic mélange sheet that crops out in eastern Cuba. It is composed of dolerite-derived amphibolite blocks embedded in a serpentinite matrix. The amphibolite blocks have mid-ocean ridge basalt (MORB)-like composition showing little if any imprint of subduction zone component, similar to most forearc and MOR basalts worldwide. Relict Cr-spinel and olivine mineral chemistry of the serpentinized ultramafic matrix suggest a forearc position for these rocks. These characteristics, together with a hornblende 40Ar/39Ar age of 123.2 ± 2.2 Ma from one of the amphibolite blocks, suggest that the protoliths of the amphibolite blocks correspond to forearc basalt (FAB)-related rocks that formed during the earlier stage of subduction initiation of the Early Cretaceous Caribbean arc. We propose that the La Tinta amphibolites correspond to fragments of sills and dikes of hypoabyssal rocks formed in the earlier stages of a subduction initiation scenario in the Pacific realm (ca. 136 Ma). The forearc dolerite-derived amphibolites formed by partial melting of upwelling fertile asthenosphere at the beginning of subduction of the Proto-Caribbean (Atlantic) slab, with no interaction with slab-derived fluids/melts. This magmatic episode probably correlates with Early Cretaceous basic rocks described in Hispaniola (Gaspar Hernandez serpentinized peridotite-tectonite). The dikes and sills cooled and metamorphosed due to hydration at low pressure (ca. 3.8 kbar) and medium to high temperature (up to 720ºC) and reached ca. 500ºC at ca. 123 Ma. At this cooling stage, serpentinite formed after hydration of the ultramafic upper mantle. This process might have been favoured by faulting during extension of the forearc, indicating an early stage of dike and sill fragmentation and serpentinite mélanges formation; however, full development of the mélange likely took place during tectonic emplacement (obduction) onto the thrust belt of eastern Cuba during the latest Cretaceous.  相似文献   
996.
《International Geology Review》2012,54(10):1300-1310
The Tianbaoshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province, is located in the western Yangtze Block and contains 2.6 million tonnes of 10–15 wt.% Pb + Zn metals. Ore bodies occur as vein or tubular types and are hosted in Sinian (late Proterozoic) carbonate rocks and are structurally controlled by the SN-trending Anninghe tectonic belt and NW-trending concealed fractures. The deposits are simple in mineralogy, with sphalerite, galena, pyrite, chalcopyrite, arsenopyrite, freibergite, and pyrargyrite as ore minerals and dolomite, calcite, and quartz as gangue minerals. These phases occur as massive, brecciated, veinlet, and dissemination in dolostone of the upper Sinian Dengying Formation. Hydrogen and oxygen isotope compositions of hydrothermal fluids range from –47.6 to –51.2‰ and –1.7 to +3.7‰, respectively. These data suggest that H2O in hydrothermal fluids had a mixed origin of metamorphic and meteoric waters. Carbon and oxygen isotope compositions range from –6.5 to –4.9‰ and +19.3 to +20.2‰, respectively. These compositions plot in the field between mantle and marine carbonate rocks with a negative correlation, suggesting that CO2 in the ore-forming fluids had multiple sources, including the Permian Emeishan flood basalts, Sinian-to-Permian marine carbonate rocks, and organic matters in Cambrian-to-Permian sedimentary rocks. Sulphur isotope compositions range from –0.4 to +9.6‰, significantly lower than Cambrian-to-Permian seawater sulphate (+15 to +35‰) and sulphate (+15 to +28‰) from evaporates in Cambrian-to-Permian strata, implicating that the S was derived from host-strata evaporates by thermal–chemical sulphate reduction. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios range from 18.110 to 18.596, 15.514 to 15.878, and 38.032 to 39.221, respectively, which plot in field of the upper crust Pb evolution curve, unlike those of Proterozoic basement rocks, Sinian dolostone, Devonian-to-Permian carbonate rocks, and the Permian Emeishan flood basalts, implying complex derivation of Pb metal in the ore-forming fluids. Geological and isotopic studies of the Tianbaoshan Pb–Zn deposit reveal that constituents in the hydrothermal fluids were derived from multiple sources and that fluid mixing was a possible metallogenic mechanism. The studied deposit is not distal magmatic–hydrothermal, sedimentary exhalative (SEDEX), or Mississippi Valley (MVT) types, rather, it represents a unique ore deposit type, named in this article the SYG type.  相似文献   
997.
The Laojiagou Mo deposit is a newly discovered porphyry Mo deposit located in the Xilamulun Mo metallogenic belt, Northeast China. Mo mineralization mainly occurred within the monzogranite and monzogranite porphyry. Re–Os isochron dating of molybdenites indicate a mineralization age of 234.9 ± 3.1 Ma. Zircon LA–ICP–MS U–Pb analysis for monzogranite porphyry and monzogranite yield 206Pb/238U ages of 238.6 ± 1.8 and 241.3 ± 1.5 Ma, respectively, indicating that Laojiagou Mo mineralization is related to Middle Triassic magmatism. Hf isotopic compositions of zircons from both monzogranite porphyry and monzogranite are characterized by positive εHf(t) values [εHf(t) = 2.9–7.3 and 1.5–7.9, respectively] and young TDM2 model ages, which implies that the magma was derived from juvenile crust created during accretion of the Central Asian Orogenic Belt (CAOB). Identification of the Laojiagou Mo deposit adds another important example of Triassic Mo mineralization in the Xilamulun Mo metallogenic belt where most Triassic Mo deposits in northeast China cluster around the northern margin of North China Craton. Based on the regional geological setting and geochronological and Hf isotope characteristics, we propose that Triassic Mo deposits and related magmatic rocks in northeast China formed during the last stages of evolution of the CAOB. These deposits formed during post-collisional extension after the closure of the Palaeo-Asian Ocean and amalgamation of the North China–Mongolian Block with the Siberian Craton.  相似文献   
998.
The northern Yangtze foreland basin system was formed during the Mesozoic continental collision between the North and South China plates along the Mianlue suture. In response to the later phase of intra-continental thrust deformation, an extensive E–W-trending molasse basin with river, deltaic, and lake deposits was produced in front of the southern Qinling–Dabieshan foreland fold-and-thrust belt during the Early–Middle Jurassic (201–163 Ma). The basin originated during the Early Jurassic (201–174 Ma) and substantially subsided during the Middle Jurassic (174–163 Ma). A gravelly alluvial fan depositional system developed in the lower part of the Baitianba Formation (Lower Jurassic) and progressively evolved into a meandering river fluvial plain and lake systems to the south. The alluvial fan conglomerates responded to the initial uplift of the southern Qinling–Dabieshan foreland fold-and-thrust belt after the oblique collision between the Yangtze and North China plates during the Late Triassic. The Qianfoya Formation (lower Middle Jurassic) mainly developed from shore-shallow lacustrine depositional systems. The Shaximiao Formation (upper Middle Jurassic) predominantly consists of thick-bedded braided river delta successions that serve as the main body of the basin-filling sequences. The upward-coarsening succession of the Shaximiao Formation was controlled by intense thrusting in the southern Qinling–Dabieshan fold-and-thrust belt. Palaeogeographic reconstructions indicated an extensive E–W foredeep depozone along the fold-and-thrust belt during the Middle Jurassic (174–163 Ma) that was nearly 150 km wide. The depozone extended westward to the Longmenshan and further east to the northern middle Yangtze plate. The northern Yangtze foreland basin was almost completely buried or modified by the subsequent differential thrusting of Dabashan and its eastern regions (Late Jurassic to Cenozoic).  相似文献   
999.
The western Qinling region of central China is situated centrally in the Kunlun, Qilian, Qinling, Longmenshan, and Songpan–Ganzi orogens. Late Palaeozoic and Early Mesozoic sediments deposited here may provide keys to understanding the tectonic evolution of the Palaeo-Tethys and collision of the North China and Yangtze Cratons. We conducted in situ U–Pb and Lu–Hf isotope analyses of 568 detrital zircons collected from Upper Palaeozoic to Mesozoic sandstones in the central Qinling block, Taohe depression, and Bailongjiang block in western Qinling to constrain the sources of these sandstones. Our results reveal that the Bailongjiang block has affinities with the Yangtze Craton, from which it may have been rifted. Therefore, the Palaeo-Tethyan Animaqen suture between the two cratons lies north of the Bailongjiang block. We identified the North China Craton as the main source for Triassic flysch in central China. It is possible that the Bailongjiang block could have blocked detritus shed from the North China Craton into the main depositional basins in the SongpanGanzi area. The dominance of 300–200 Ma detrital zircons of metamorphic origin in Lower Jurassic sandstones indicates that the Dabie–Qinling orogen was elevated during Early Jurassic time. In addition, our Lu–Hf isotopic results also reveal that Phanerozoic igneous rocks in central China were mostly products of crustal reworking with insignificant formation of juvenile crust.  相似文献   
1000.
ABSTRACT

In this article we present zircon U–Pb ages, Hf isotopes, and whole-rock geochemistry of the Longzhu rhyolite porphyry from the Cathaysia Block, Southeast China to constrain its petrogenesis and provide insights into the early Precambrian tectonic evolution of the Cathaysia Block. LA-ICP-MS zircon U–Pb dating of a representative sample yields a weighted mean 206Pb/207Pb age of 1819 ± 16 Ma, interpreted as the crystallization age of the Longzhu rhyolite porphyry. Zircons from this sample have εHf(t) values ranging from – 8.4 to – 2.2 and THfDM2 model ages from 2.76 to 2.46 Ga. The whole-rock Nd isotopic data from the Longzhu rhyolite porphyries yield εNd(t) values spanning – 6.3 to – 4.7 and TNdDM2 model ages from 2.81 to 2.69 Ga. The rhyolite porphyries have geochemical features similar to those of the typical A-type granites (rhyolites), with high SiO2, total alkali contents and FeOt/MgO ratios, and low CaO and MgO contents. Additionally, the rhyolite porphyries have high total rare earth element concentrations (627 ~ 760 ppm), high (La/Yb)N values (14.5 ~ 26.9), strongly negative Eu anomalies (δEu = 0.28 ~ 0.41), and display enrichments of Rb, Ga, Th, and U and depletions of Sr, Nb, Ta, Eu, and Ti. The geochemical and Nd-Hf isotopic features suggest that the Palaeoproterozoic Longzhu rhyolite porphyries were generated by partial melting of source rocks similar to those of the Badu Complex in an intra-plate extensional setting. The results from this study, when combined with existing geochronological data, further demonstrate that the Palaeoproterozoic rocks of Wuyishan terrane probably represent a remnant of the Columbia supercontinent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号