首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2498篇
  免费   481篇
  国内免费   1088篇
测绘学   87篇
大气科学   837篇
地球物理   393篇
地质学   806篇
海洋学   1467篇
天文学   25篇
综合类   267篇
自然地理   185篇
  2024年   12篇
  2023年   41篇
  2022年   106篇
  2021年   131篇
  2020年   145篇
  2019年   141篇
  2018年   138篇
  2017年   147篇
  2016年   123篇
  2015年   131篇
  2014年   219篇
  2013年   239篇
  2012年   163篇
  2011年   178篇
  2010年   133篇
  2009年   192篇
  2008年   213篇
  2007年   205篇
  2006年   204篇
  2005年   185篇
  2004年   123篇
  2003年   160篇
  2002年   109篇
  2001年   83篇
  2000年   104篇
  1999年   72篇
  1998年   50篇
  1997年   42篇
  1996年   33篇
  1995年   35篇
  1994年   43篇
  1993年   17篇
  1992年   22篇
  1991年   25篇
  1990年   20篇
  1989年   17篇
  1988年   21篇
  1987年   5篇
  1986年   7篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   9篇
  1981年   3篇
  1980年   6篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
排序方式: 共有4067条查询结果,搜索用时 31 毫秒
991.
In the framework of the KEOPS project (KErguelen: compared study of the Ocean and the Plateau in Surface water), we aimed to provide information on the water mass pathways and vertical mixing on the Kerguelen Plateau, Southern Ocean, based on 228Ra profiles. Because 228Ra activities are extremely low in this area (~ 0.1 dpm/100 kg or ~ 2.10− 18 g kg− 1), the filtration of large volumes of seawater was required in order to be able to detect it with minimal uncertainty. This challenging study was an opportunity for us to test and compare methods aimed at removing efficiently radium isotopes from seawater. We used Mn-fiber that retains radium and that allows the measurement of all four radium isotopes (226Ra, 228Ra, 223Ra, 224Ra). First, we used Niskin bottles or the ship's seawater intake to collect large volumes of seawater that were passed onto Mn-fiber in the laboratory. Second, we filled cartridges with Mn-fiber that we placed in tandem on in situ pumps. Finally, we fixed nylon nets filled with Mn-fiber on the frame of in situ pumps to allow the passive filtration of seawater during the pump deployment.Yields of radium fixation on the cartridges filled with Mn-fiber and placed on in situ pumps are ca. 30% when combining the two cartridges. Because large volumes of seawater can be filtered with these pumps, this yields to effective volumes of 177–280 kg (that is, higher than that recovered from fourteen 12-l Niskin bottles). Finally, the effective volume of seawater that passed through Mn-fiber placed in nylon nets and deployed during 4 h ranged between 125 and 364 kg. Consequently, the two techniques that separate Ra isotopes in situ are good alternatives for pre-concentrating radium from seawater. They can save ship-time by avoiding repeated CTD casts to obtain the large volumes of seawater. This is especially true when in situ pumps are deployed to collect suspended particles. However, both methods only provide 228Ra/226Ra ratios. The determination of the 228Ra specific activity is obtained by multiplying this ratio by the 226Ra activity measured in a discrete sample collected at the same water depth.  相似文献   
992.
The measurement of short-lived 223Ra often involves a second measurement for supported activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 284 values on the oceanic distribution of 227Ac, which was collected when analyzing water samples for short-lived radium isotopes by the radium delayed coincidence counting system. The present work compiles 227Ac data from coastal regions all over the northern hemisphere, including values from ground water, from estuaries and lagoons, and from marine end-members. Deep-sea samples from a continental slope off Puerto Rico and from an active vent site near Hawaii complete the overview of 227Ac near its potential sources.The average 227Ac activities of nearshore marine end-members range from 0.4 dpm m− 3 at the Gulf of Mexico to 3.0 dpm m− 3 in the coastal waters of the Korean Strait. In analogy to 228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac activities, although less pronounced than for radium, due to its weaker shelf source. Based on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 1018 dpm 227Acex in the ocean, which corresponds to 37 moles, or 8.4 kg. This implies a flux of 127 dpm m−2 y− 1 from the deep-sea floor. For the shelf regions, we obtain a global inventory of 227Ac of 4.5 * 1015 dpm, which cannot be converted directly into a flux value, as the regional loss term of 227Ac to the open ocean would have to be included.Ac has so far been considered to behave similarly to Ra in the marine environment, with the exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of geochemical differences between Ac, which is retained in a warm vent system, and Ra, which is readily released [Moore, W.S., Ussler, W. and Paull, C.K., 2008-this issue. Short-lived radium isotopes in the Hawaiian margin: Evidence for large fluid fluxes through the Puna Ridge. Marine Chemistry]. Another potential mechanism of producing deviations in 227Ac/228Ra and daughter isotope ratios from the expected production value of lithogenic material is observed at reducing environments, where enrichment in uranium may occur. The presented data here may serve as a reference for including 227Ac in circulation models, and the overview provides values for some end-members that contribute to the global Ac distribution.  相似文献   
993.
Changes from winter (July) to summer (February) in mixed layer carbon tracers and nutrients measured in the sub-Antarctic zone (SAZ), south of Australia, were used to derive a seasonal carbon budget. The region showed a strong winter to summer decrease in dissolved inorganic carbon (DIC;  45 µmol/kg) and fugacity of carbon dioxide (fCO2;  25 µatm), and an increase in stable carbon isotopic composition of DIC (δ13CDIC;  0.5‰), based on data collected between November 1997 and July 1999.The observed mixed layer changes are due to a combination of ocean mixing, air–sea exchange of CO2, and biological carbon production and export. After correction for mixing, we find that DIC decreases by up to 42 ± 3 µmol/kg from winter (July) to summer (February), with δ13CDIC enriched by up to 0.45 ± 0.05‰ for the same period. The enrichment of δ13CDIC between winter and summer is due to the preferential uptake of 12CO2 by marine phytoplankton during photosynthesis. Biological processes dominate the seasonal carbon budget (≈ 80%), while air–sea exchange of CO2 (≈ 10%) and mixing (≈ 10%) have smaller effects. We found the seasonal amplitude of fCO2 to be about half that of a study undertaken during 1991–1995 [Metzl, N., Tilbrook, B. and Poisson, A., 1999. The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean. Tellus Series B—Chemical and Physical Meteorology, 51(4): 849–861.] for the same region, indicating that SAZ may undergo significant inter-annual variations in surface fCO2. The seasonal DIC depletion implies a minimum biological carbon export of 3400 mmol C/ m2 from July to February. A comparison with nutrient changes indicates that organic carbon export occurs close to Redfield values (ΔP:ΔN:ΔC = 1:16:119). Extrapolating our estimates to the circumpolar sub-Antarctic Ocean implies a minimum organic carbon export of 0.65 GtC from the July to February period, about 5–7% of estimates of global export flux. Our estimate for biological carbon export is an order of magnitude greater than anthropogenic CO2 uptake in the same region and suggests that changes in biological export in the region may have large implications for future CO2 uptake by the ocean.  相似文献   
994.
基于中国热带气旋年鉴资料,从气候学角度出发,对西北太平洋TC(热带气旋)发生温带变性的频数与大尺度环流系统间的关系进行了诊断和分析.研究发现变性TC多发生于夏、秋两季,通过对NCEP月平均再分析资料的500hPa高度场进行EOF分解,发现西北太平洋TC变性的频数与65°N附近强冷高压系统在夏、秋两季都存在着正相关关系,且相关性在秋季高于夏季;与30°N附近强副热带高压系统存在负相关关系,夏季副热带高压系统的作用更大;与30°N以南西北太平洋多台风活动区域的弱低压存在显著的负相关,低压越弱,对流越弱,则TC的生成数越少,其中发生变性的TC数也会减少.500hPa高度场EOF分解的第一特征向量所对应的时间函数分布在20世纪70年代中期前后出现了反号,较好地对应了变性TC年频数的年际变化趋势,70年代中期之前变性TC呈总体偏多,之后变性TC的频数总体偏少,呈明显下降趋势.  相似文献   
995.
The Nankai Trough located southeast of Shikoku Island, Japan, exhibits a zone of exceptionally high heat flow. In the central part of the Nankai Trough the fossil spreading centre of the Shikoku Basin is subducted beneath the southwest Japan arc. We have modelled the temperature and maturation history along the Muroto Transect reaching from the tip of the thrust zone out into nearly undeformed Quaternary and Tertiary sediments seawards of Nankai Trough. We used two balanced cross-sections defining the sections before and after overthrusting as input for 2D-basin modelling. We can show that rapid burial and overthrusting during the Quaternary in combination with a heat flow history following the cooling curve of a 15 Ma old oceanic plate is not sufficient to explain the measured maturity of organic material in the sediments. Several heat flow scenarios derived from theoretical concepts [Yamano, M., Kinoshita, M., Goto, S., Matsubayashi, O., 2003. Extremely high heat flow anomaly in the middle part of the Nankai Trough. Physics and Chemistry of the Earth, Parts A/B/C 28, 487–497.] and previous modelling approaches [e.g. Brown, K.M., Saffer, D.M., Bekins, B.A., 2001. Smectite diagenesis, pore water freshening, and fluid flow at the toe of the Nankai wedge. Earth and Planetary Science Letters 194, 97–109; Spinelli, G.A., Underwood, M.B., 2005. Modeling thermal history of subducting crust in Nankai Trough: constraints from in situ sediment temperature and diagenetic reaction progress. Geophysical Research Letters 32(L09301): doi:10.1029/2005GL022793; Steurer, J., Underwood, M.B., 2003. Clay mineralogy of mudstones from the Nankai Trough reference sites 1173 and 1177 and frontal accretionary prism site 1174. In: H. Mikada et al. (Eds.), pp. 1–37. Available from: <http://www-odp.tamu.edu/publications/190196SR/VOLUME/CHAPTERS/211.PDF>] were tested. The best match between observed maturity levels, temperature and heat flow measurements is reached for a heat flow history which initially assumes the cooling of a 15 Ma old oceanic lithosphere but is reheated to 170–180 mW/m2 during the phase of rapid burial in the Quaternary. This can be achieved either by assuming the onset of hydrothermal circulation in the cooling crust or by reheating caused by off-axis volcanism at about 6 Ma [Yamano, M., Kinoshita, M., Goto, S., Matsubayashi, O., 2003. Extremely high heat flow anomaly in the middle part of the Nankai Trough. Physics and Chemistry of the Earth, Parts A/B/C 28, 487–497.].  相似文献   
996.
�޵�����ѹ���ݵĿɽ�ˮ���о�   总被引:1,自引:1,他引:0  
?????GPS?????????????????????????澫??????????????????????????????????????????????????????????????????侫????з?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????С?????????????????????????????????????????????????????????????????п?????????  相似文献   
997.
Southwestern Indian state, Kerala experienced extreme devastating statewide flood event of the century during 2018 monsoon season. In this study, an attempt has been made to bring out the salient dynamical factors contributed to the Kerala flood. There were 3 active spells over Kerala during 2018 Monsoon season. All the three spells were accustomed with the intrinsic factors of low frequency components of the active spells such as strength of monsoon Low Level Jet (LLJ), Monsoon depressions in the Bay of Bengal, favorable Madden-Julian oscillation (MJO) phases and Western Pacific systems. Though all the common ingredients remain same, the third spell is distinct with the less evaporation flux over Western and Central Arabian Sea and unusual moisture transport from maritime continent through South Equatorial Indian ocean (SEIO) towards the Kerala coast across Equator. Strong meridional pressure gradient force created by the combined effect of high pressure anomaly oriented Northwest-Southeast direction across tropical Indian ocean and anomalous low pressure along monsoon trough might have contributed to this unusual moisture transport across SEIO originating from west of Australia. The anomalous high pressure in South Indian ocean was greatly influenced by the position of the Mascarene high. Subtropical Indian ocean dipole (SIOD) also exhibits an influential role by altering tropical Southern Indian ocean dynamics in favor of the unusual moisture transport. The position of the monsoon depression and presence of typhoons in Western Pacific might have aided to this moisture transport. However, the normal moisture transport from Central Arabian sea towards Kerala coast by virtue of the strong LLJ along with additional moisture transport directly from South of maritime continent through SEIO across the Equator towards Kerala coast might have played a dominant role in the historical flood event over entire Kerala state.  相似文献   
998.
门捷列夫洋脊南部的粘土矿物沉积具有明确的物源,为追踪该区沉积环境的演变提供了良好的条件。末次间冰期以来,ARC7-E23孔中的粘土矿物记录表现出了非常显著的变化。结合沉积物粒度的端元组份和冰阀碎屑沉积,粘土矿物的变化模式表明,东西伯利亚冰盖(ESIS)的规模可能是控制细颗粒沉积的主要因素。在氧同位素2期(MIS2)和4期(MIS4),门捷列夫洋脊南部可能被ESIS所覆盖,几乎阻挡了所有来自加拿大和拉夫贴夫海陆架的沉积物,但允许大量来自东西伯利亚海陆架的细粒沉积物输入。只有当ESIS消融后,波弗特环流和越极流的相对强度以及搬运作用才成为了控制远源沉积物输入的主要因素。MIS3期的气候条件似乎最适合远源沉积物的输入,不仅提高了表层环流的流通性,也提供了足够多的搬运介质。  相似文献   
999.
孟加拉湾障碍层年际变化及其与印度洋偶极子事件的联系   总被引:1,自引:1,他引:0  
利用1980?2015年SODA温盐资料,结合Argo数据分析了印度洋偶极子(IOD)事件年份孟加拉湾障碍层的变化特征及其形成机制。结果表明,IOD事件年份孟加拉湾障碍层变化显著。纯的正IOD(纯pIOD)年份及伴随型pIOD年份盛期(9?11月),除孟加拉湾内西南海域障碍层厚度略变厚约5 m外,赤道海域、安达曼海至孟加拉湾北部障碍层厚度均变薄5~15 m,此障碍层距平盛期形态在纯pIOD年份随pIOD消亡迅速消退,但在伴随型pIOD年份维持至翌年3?5月才开始弱化。纯的负IOD (纯nIOD)年份障碍层厚度变化特征与pIOD年份大体相反。进一步分析表明,IOD事件年份赤道风场距平的远地强迫造成等温层深度的变化是湾内障碍层变化的主因。在伴随型IOD年份,受ENSO事件的影响,赤道风场距平在IOD消亡后仍得以维持3个月以上,使得湾内障碍层距平形态持续更久。除赤道远地强迫外,湾内局地风场的Ekman抽吸作用以及混合盐度变化对障碍层厚度年际变化也有一定影响。  相似文献   
1000.
The Kings River Experimental Watersheds (KREW) were established in 2002 to expand our knowledge of catchment physical, chemical, and biological processes in Sierra Nevada headwater forests, and to better understand the impacts of prescribed burning and forest thinning on these processes. Two elevation strata (high and low) were selected for the KREW sites, with four independent catchments and one nested catchment within each stratum. Both high and low elevation study areas were instrumented for continuous measurements of meteorology, streamflow, and turbidity. Atmospheric and stream chemistry, suspended sediment concentration, and bedload sediment delivery were measured on a regular schedule. Soil chemical and physical properties and vegetation were systematically sampled before and after the initial thinning and prescribed burning treatments, which were implemented between 2012 and 2016. Post-treatment data collection continues today as we explore opportunities for the second round of possible treatments. The critical research infrastructure and long-term baseline data collection has been instrumental in building partnerships with downstream managers, end users, non-governmental organizations, academic researchers, and national research programmes. Contributions to date include fundamental understanding of magnitude and variability of nutrient deposition; carbon, nutrient, and major ion dynamics in headwater streams; aquatic algae and macroinvertebrate populations; vegetation composition and structure; and streamflow responses to precipitation in the two elevation strata. Data from the experimental watersheds also support calibration and validation of diverse hydrologic models used for water resources planning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号