首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   80篇
  国内免费   40篇
测绘学   41篇
大气科学   64篇
地球物理   179篇
地质学   71篇
海洋学   60篇
天文学   16篇
综合类   19篇
自然地理   52篇
  2024年   1篇
  2022年   4篇
  2021年   1篇
  2020年   10篇
  2019年   16篇
  2018年   11篇
  2017年   10篇
  2016年   16篇
  2015年   15篇
  2014年   13篇
  2013年   31篇
  2012年   13篇
  2011年   12篇
  2010年   15篇
  2009年   18篇
  2008年   22篇
  2007年   34篇
  2006年   24篇
  2005年   25篇
  2004年   17篇
  2003年   22篇
  2002年   19篇
  2001年   14篇
  2000年   15篇
  1999年   13篇
  1998年   13篇
  1997年   9篇
  1996年   12篇
  1995年   14篇
  1994年   16篇
  1993年   7篇
  1992年   7篇
  1991年   11篇
  1990年   10篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1982年   1篇
排序方式: 共有502条查询结果,搜索用时 31 毫秒
191.
Higher-order approximation techniques for estimating stochastic parameter of the non-homogeneous Poisson (NHP) model are presented. The NHP model is characterized by a two-parameter cumulative probability distribution function (CDF) of sediment displacement. Those two parameters are the temporal and spatial intensity functions, physically representing the inverse of the average rest period and step length of sediment particles, respectively. Difficulty of estimating the parameters has, however, restricted the applications of the NHP model. The approximation techniques are proposed to address such problem. The basic idea of the method is to approximate a model involving stochastic parameters by Taylor series expansion. The expansion preserves certain higher-order terms of interest. Using the experimental (laboratory or field) data, one can determine the model parameters through a system of equations that are simplified by the approximation technique. The parameters so determined are used to predict the cumulative distribution of sediment displacement. The second-order approximation leads to a significant reduction of the CDF error (of the order of 47%) compared to the first-order approximation. Error analysis is performed to evaluate the accuracy of the first- and second-order approximations with respect to the experimental data. The higher-order approximations provide better estimations of the sediment transport and deposition that are critical factors for such environment as spawning gravel-bed.  相似文献   
192.
High-frequency records of nine low magnitude shallow earthquakes of the Vrancea (Romania) seismic region are inverted for the seismic moment tensor (MT). An approach is suggested regarding how to obtain at least a rough estimate of the MT when the information on the structure of the crust is poor. Here simple 1-D layered models are used in the Greens function synthesis despite the fact that the structure of the region is undoubtedly very complex. Different 1-D models were used for different source-station paths to approximate lateral variations. Record of a station located on a ray path which crosses a structure differing substantially from a 1-D model may however bias the retrieved MT essentially. Therefore, we did not collectively process all records, but subsets of stations separately. We check the consistency of the MTs resulting from these individual bootstrap solutions, and reject those which differ substantially, assuming that this is due to the oversimplification of the forward modeling. Thereafter, the averaged moment tensor yielded by the consistent subsets is accepted. Moreover, the distribution of the T, N and P axes from the moment tensors used for averaging provides a rough estimate of their reliability.Following this simplistic procedure, we found seven acceptably constrained solutions among nine events processed. Their P axes are compared with the general trend of the stress in the area: three comply with it, the others should be attributed to the complex stress field active in the region.Acknowledgment This research has been made possible by MURST (40% and 60%), by UNESCO-IGCP project 414 Realistic Modelling of Seismic Input for Megacities and Large Urban Areas and NATO SfP 972266. Partial support issued from the Grant Agency of Czech Rep. (Grant 205/02/0383) and from the National Agency for Science, Technology and Innovation of Romania (Grant 6185 GR/2000).  相似文献   
193.
Heavy tailed random variables (rvs) have proven to be an essential element in modeling a wide variety of natural and human-induced processes, and the sums of heavy tailed rvs represent a particularly important construction in such models. Oriented toward both geophysical and statistical audiences, this paper discusses the appearance of the Pareto law in seismology and addresses the problem of the statistical approximation for the sums of independent rvs with common Pareto distribution F(x)=1 – x for 1/2 < < 2. Such variables have infinite second moment which prevents one from using the Central Limit Theorem to solve the problem. This paper presents five approximation techniques for the Pareto sums and discusses their respective accuracy. The main focus is on the median and the upper and lower quantiles of the sums distribution. Two of the proposed approximations are based on the Generalized Central Limit Theorem, which establishes the general limit for the sums of independent identically distributed rvs in terms of stable distributions; these approximations work well for large numbers of summands. Another approximation, which replaces the sum with its maximal summand, has less than 10% relative error for the upper quantiles when < 1. A more elaborate approach considers the two largest observations separately from the rest of the observations, and yields a relative error under 1% for the upper quantiles and less than 5% for the median. The last approximation is specially tailored for the lower quantiles, and involves reducing the non-Gaussian problem to its Gaussian equivalent; it too yields errors less than 1%. Approximation of the observed cumulative seismic moment in California illustrates developed methods.  相似文献   
194.
A new gravimetric, satellite altimetry, astronomical ellipsoidal boundary value problem for geoid computations has been developed and successfully tested. This boundary value problem has been constructed for gravity observables of the type (i) gravity potential, (ii) gravity intensity (i.e. modulus of gravity acceleration), (iii) astronomical longitude, (iv) astronomical latitude and (v) satellite altimetry observations. The ellipsoidal coordinates of the observation points have been considered as known quantities in the set-up of the problem in the light of availability of GPS coordinates. The developed boundary value problem is ellipsoidal by nature and as such takes advantage of high precision GPS observations in the set-up. The algorithmic steps of the solution of the boundary value problem are as follows:
- Application of the ellipsoidal harmonic expansion complete up to degree and order 360 and of the ellipsoidal centrifugal field for the removal of the effect of global gravity and the isostasy field from the gravity intensity and the astronomical observations at the surface of the Earth.
- Application of the ellipsoidal Newton integral on the multi-cylindrical equal-area map projection surface for the removal from the gravity intensity and the astronomical observations at the surface of the Earth the effect of the residual masses at the radius of up to 55 km from the computational point.
- Application of the ellipsoidal harmonic expansion complete up to degree and order 360 and ellipsoidal centrifugal field for the removal from the geoidal undulations derived from satellite altimetry the effect of the global gravity and isostasy on the geoidal undulations.
- Application of the ellipsoidal Newton integral on the multi-cylindrical equal-area map projection surface for the removal from the geoidal undulations derived from satellite altimetry the effect of the water masses outside the reference ellipsoid within a radius of 55 km around the computational point.
- Least squares solution of the observation equations of the incremental quantities derived from aforementioned steps in order to obtain the incremental gravity potential at the surface of the reference ellipsoid.
- The removed effects at the application points are restored on the surface of reference ellipsoid.
- Application of the ellipsoidal Bruns’ formula for converting the potential values on the surface of the reference ellipsoid into the geoidal heights with respect to the reference ellipsoid.
- Computation of the geoid of Iran has successfully tested this new methodology.
Keywords: Geoid computations; Ellipsoidal approximation; Ellipsoidal boundary value problem; Ellipsoidal Bruns’ formula; Satellite altimetry; Astronomical observations  相似文献   
195.
A new theory for high-resolution regional geoid computation without applying Stokess formula is presented. Operationally, it uses various types of gravity functionals, namely data of type gravity potential (gravimetric leveling), vertical derivatives of the gravity potential (modulus of gravity intensity from gravimetric surveys), horizontal derivatives of the gravity potential (vertical deflections from astrogeodetic observations) or higher-order derivatives such as gravity gradients. Its algorithmic version can be described as follows: (1) Remove the effect of a very high degree/order potential reference field at the point of measurement (POM), in particular GPS positioned, either on the Earths surface or in its external space. (2) Remove the centrifugal potential and its higher-order derivatives at the POM. (3) Remove the gravitational field of topographic masses (terrain effect) in a zone of influence of radius r. A proper choice of such a radius of influence is 2r=4×104 km/n, where n is the highest degree of the harmonic expansion. (cf. Nyquist frequency). This third remove step aims at generating a harmonic gravitational field outside a reference ellipsoid, which is an equipotential surface of a reference potential field. (4) The residual gravitational functionals are downward continued to the reference ellipsoid by means of the inverse solution of the ellipsoidal Dirichlet boundary-value problem based upon the ellipsoidal Abel–Poisson kernel. As a discretized integral equation of the first kind, downward continuation is Phillips–Tikhonov regularized by an optimal choice of the regularization factor. (5) Restore the effect of a very high degree/order potential reference field at the corresponding point to the POM on the reference ellipsoid. (6) Restore the centrifugal potential and its higher-order derivatives at the ellipsoidal corresponding point to the POM. (7) Restore the gravitational field of topographic masses ( terrain effect) at the ellipsoidal corresponding point to the POM. (8) Convert the gravitational potential on the reference ellipsoid to geoidal undulations by means of the ellipsoidal Bruns formula. A large-scale application of the new concept of geoid computation is made for the Iran geoid. According to the numerical investigations based on the applied methodology, a new geoid solution for Iran with an accuracy of a few centimeters is achieved.Acknowledgments. The project of high-resolution geoid computation of Iran has been support by National Cartographic Center (NCC) of Iran. The University of Tehran, via grant number 621/3/602, supported the computation of a global geoid solution for Iran. Their support is gratefully acknowledged. A. Ardalan would like to thank Mr. Y. Hatam, and Mr. K. Ghazavi from NCC and Mr. M. Sharifi, Mr. A. Safari, and Mr. M. Motagh from the University of Tehran for their support in data gathering and computations. The authors would like to thank the comments and corrections made by the four reviewers and the editor of the paper, Professor Will Featherstone. Their comments helped us to correct the mistakes and improve the paper.  相似文献   
196.
The hydrodynamic interaction and mechanical coupling effects of two floating platforms connected by elastic lines are investigated by using a time-domain multi-hull/mooring/riser coupled dynamics analysis program. Particular attention is paid to the contribution of off-diagonal hydrodynamic interaction terms on the relative motions during side-by-side offloading operation. In this regard, the exact method (CMM: combined matrix method) including all the vessel and line dynamics, and the 12×12 hydrodynamic coefficients in a combined matrix is developed. The performance of two typical approximation methods (NHI/No Hydrodynamic Interaction: iteration method between two vessels without considering hydrodynamic interaction effects; SMM/Separated Matrix Method: iteration method between two vessels with partially considering hydrodynamic interaction effects, i.e. ignoring off-diagonal cross-coupling terms in the 12×12 hydrodynamic coefficient matrix) is also tested for the same side-by-side offloading operation in two different environmental conditions. The numerical examples show that there exists significant discrepancy at sway and roll modes between the exact and the approximation methods, which means that the cross-coupling (off-diagonal block) terms of the full hydrodynamic coefficient matrix play an important role in the case of side-by-side offloading operation. Therefore, such approximation methods should be used with care. The fender reaction forces, which exhibit large force with contact but no force without contact, are also numerically modeled in the present time-domain simulation study.  相似文献   
197.
Asymptotic Analysis Methods for Structural Reliability   总被引:2,自引:0,他引:2  
- Applying Laplace asymptotic approximation of integral, asymptotic analysis methods of structural reliability are proposed in generalized and orthogonal random space. Analytic results show that the proposed methods are simple in calculation and accurate enough for problems of continuous random variables.  相似文献   
198.
The effects of a porous-elastic seabed on interfacial wave propagation   总被引:2,自引:0,他引:2  
S.J. Williams  D.-S. Jeng   《Ocean Engineering》2007,34(13):1818-1831
A theoretical model for the decay of progressive interfacial gravity waves propagating above a porous bed is developed assuming potential flow in a two-layer system with a free surface and a sharp interface. A new wave dispersion relation for two-layer flow above a quasi-static porous seabed is derived and investigated. The solutions for the nonlinear wave profile are derived using a perturbation method and the effects of geometric and flow parameters including bed characteristics, depth ratios and the densities of the two fluids are studied and discussed. Comparisons with existing analytical solutions for viscous interfacial wave attenuation over a rigid bed demonstrate the relative importance of the porous bed as a mechanism for wave decay. It is shown that the influence of a porous seabed on wave propagation is significant when the depth of the lower layer, normalised by the wavenumber, is less than π.  相似文献   
199.
研究具有二次型性能指标的离散时滞双线性系统最优控制问题。对既带有时间超前项又带有时间滞后项的非线性两点边值(TPBV)问题,通过逐次逼近算法(SAA)构造不含超前滞后项的线性非齐次TPBV问题迭代序列。最优控制律由精确的线性反馈项和非线性时滞补偿序列的极限项组成。取补偿项序列的有限次迭代值,获得次优控制律。通过仿真,验证算法的有效性。  相似文献   
200.
Numerical simulations are essential tools for studying tsunami generation and evolution and finite-element (FE) methods are widely used, especially because of their capability in modeling water waves in basins with complex bathymetry and irregular coastlines. This paper presents the numerical simulation of an historical Italian tsunami that affected the Tyrrhenian coasts of Calabria and Sicily on 5 February 1783 following a strong destructive earthquake that was the first of a terrible sequence of seismic shocks terrifying the Calabrian population for more than two months. The numerical model is an FE model based on the nonlinear nondispersive shallow-water approximation of the Navier-Stokes equations. Since FE discretization schemes may lead to solutions undesirably affected by noise over coarse grids, in this study numerical noise is controlled by suitably smoothing the FE solution at regular time steps t s. The performance of our smoothing algorithm is tested for significant linear cases for which an analytical solution is available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号