首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   15篇
  国内免费   17篇
测绘学   2篇
大气科学   12篇
地球物理   43篇
地质学   33篇
海洋学   2篇
天文学   2篇
综合类   1篇
自然地理   20篇
  2024年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   8篇
  2013年   7篇
  2011年   5篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   8篇
  2005年   12篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1992年   2篇
  1991年   1篇
排序方式: 共有115条查询结果,搜索用时 16 毫秒
61.
62.
63.
In order to evaluate factors controlling transpiration of six common eastern deciduous species in North America, a model describing responses of canopy stomatal conductance (GS) to net radiation (RN), vapor pressure deficit (D) and relative extractable soil water (REW) was parameterized from sap flux data. Sap flux was measured in 24 mature trees consisting of the species Carya tomentosa, Quercus alba, Q. rubra, Fraxinus americana, Liriodendron tulipifera, and Liquidambar styraciflua in a bottomland oak-hickory forest in the Duke Forest, NC. Species differences in model coefficients were found during the 1997 growing season. All species showed a reduction in GS with increasing D. RN influenced GS in the overstory shade intolerant L. styraciflua to a larger extent than the other species measured. In addition, despite a severe drought during the study period, only L. tulipifera showed a decline in GS with decreasing REW. The primary effect of the drought for the other species appeared to be early autumn leaf senescence and abscission. As a result, despite the drought in this bottomland forest accustomed to ample water supply, maximum daily transpiration (1.6 mm) and growing season transpiration (264 mm) were similar to a nearby upland forest measured during a year of above average precipitation. These results may aid in assessing differences in water use and the ability of bottomland deciduous species to tolerate alterations in the frequency or amount of precipitation. Results also suggest little variation in water use among forests of similar composition and structure growing in different positions in the landscape and subjected to large interannual variation in water supply.  相似文献   
64.
Transpirations of three dominated tree species, namely Mongol Scotch Pine (Pinus sylvestris var. mongolica Litvin), White elm (Ulmus pumila) and Gansu Poplar (Populus gansuensis Wang et Yang) in oasis shelter forest (Linze site) and of two dominated tree species,namely Euphrates Poplar (Populus euphratica Oliv.) and Russia olive (Elaeagnus angustifolia Linn.) in lowland desert (Erjinaqi site) have been estimated using measured sapflow in summer,autumn and winter, 2002 and in spring, 2003. An ENVIS System was used for each site to measure microclimate variables, soil moisture and sapflow every half an hour, and the study time scale is one day. In the 104 days of observation during the growing season at the Linze site, the average daily sapflow of Gansu Poplar is 9.93L·d-1,and the average transpiration per unit leaf area is 1.99mm·d-1.For White elm tree,the daily average sapflow is 4.08L·d-1,while the daily average transpiration per unit leaf area is 0.49mm·d-1.The values for Mongol Scotch Pine are 3.91L·d-1 and 0.25mm·d-1,respectively.In the total 73 days of observation during the growing season at the Erjinaqi site, the daily average sapflows of Russia olive and Euphrates Poplar are 12.1 and 20.97L·d-1,respectively,and the average transpirations per unit leaf area are 0.22 amd 0.31mm·d-1,respectively.In the observation period of the growing season,tree conductances of Mongol Scotch Pine, White elm, Gansu Poplar or Russia olive show an exponential relationship with the daily average air temperature or vapour pressure deficit, but the relationship is not so obvious between tree conductance and global radiation. The transpiration process of each tree species is affected by all the observed four environmental variables. The response of tree conductance to different climatic factors changes with tree species. The effect of the same factor to the same tree species is also variable in different growing stages. The sapflow of every tree species is relatively large in later spring to early summer, and low in summer, and then reaches its largest value in later September. In the mid-November, the sapflow is relatively large, especially the deciduous tree species. This may be characteristic of the tree species in Arid Regions of Northwest China.  相似文献   
65.
To understand the seasonal variations of water use efficiency (WUE) of coniferous plantation in the subtropical monsoon area, the experiment was conducted in 2003 and 2004 which presented two distinguished climatic conditions (severe summer drought in 2003 and normal climatic condition in 2004). The water stress influenced WUE greatly, which caused a special seasonal WUE pattern. WUE reached the minimum in summer drought and the maximum in winter, which was contrary to the variation of gross primary production (GPP) and canopy evaporation (Fw). In winter, GPP and Fw increased along with the increasing of air temperature and vapor pressure deficit (VPD), with the similar increasing rate. However, in drought summer, there was an adverse trend among GPP/Fw and air temperature and VPD, and the decreasing rate of GPP was far larger than that of Fw. In summer, the conservation of WUE was changed because of the environmental factors, resulting in the decreasing WUE. The photosynthesis and transpiration of vegetation were mainly controlled by the environmental factors in winter, and the impact of stomatal regulation was relatively weak. In summer, Fw was mainly controlled by the stomatal closure and GPP by both environmental factors and stomatal closure.  相似文献   
66.
中地壳的水-岩作用对相关的地球物理性质影响   总被引:1,自引:0,他引:1  
对于地壳的地球物理详细探测发现中地壳普遍存在着高导层和低速层.高温高压下的矿物(岩石)-流体反应的化学动力学实验和水的性质研究可以提供我们认识地壳的地球物理探测结果的新信息.通常,中地壳大致位于15至25km的深度范围.高导层和低速层普遍存在于中地壳.各地的地壳厚度不同,但是中地壳和高导-低速层的深度范围十分相似.中地壳的顶界温度处于300℃,底界为450℃~500℃范围.为了认识中地壳的高导低速层的起因,作者重点做了模拟中地壳条件下水-岩相互作用实验,同时,分析了水在近临界区至超临界区的突变性质.矿物(钠长石、透辉石、阳起石)与水,玄武岩与水反应的化学动力学实验是使用流体通过叠层反应器的开放体系在25℃~400℃和22MPa下完成的.与水反应的矿物或岩石里的各个元素溶解到溶液里的释放速率一般不一样.硅酸盐矿物的硅的最大释放速率是在300℃.其它元素,如Na、K、Mg、Ca、Fe、Al等释放速率在<300℃时都高于硅的释放速率,在>300℃时硅的释放速率要高于其它元素的释放速率.在水中的硅的大释放速率会导致硅酸盐矿物格架解体.作者假定地壳里普遍存在水占1%(体积).这时,地壳里会发生水-岩相互作用.中地壳的流体处于300℃~500℃.在由亚临界态进入超临界区的演化过程中,在跨越临界温度时水的性质发生剧烈变化.如密度、介电常数等热力学参数.这一变化会引起水/岩相互作用的反应动力学涨落,会导致中地壳岩层的硅的淋失,硅酸盐矿物解体,岩石崩塌.同时,在临界区水的性质强烈变化还有水的电导率、迁移性质、等,这会影响中地壳一些物理性质,如中地壳高导层和低速层的出现.  相似文献   
67.
260型电导电极能满足日常地震观测要求,但其精度在观测高和低电导率水样时有所不同;电导池常数的标定对电导率的日常观测是非常关键的,准备一支备用电导电极以确保电导观测的精度,提高观测数据的质量。  相似文献   
68.
With the advancement in oil exploration,producible oil and gas are being found in low resistivity reservoirs,which may otherwise be erroneously thought as water zones from their resistivity.However,the evaluation of low resistivity reservoirs remains difficult from log interpretation.Since low resistivity in hydrocarbon bearing sands can be caused by dispersed clay,laminated shale,conductive matrix grains,microscopic capillary pores and high saline water,a new resistivity model is required for more accurate hydrocarbon saturation prediction for low resistivity formations.Herein,a generalized effective medium resistivity model has been proposed for low resistivity reservoirs,based on experimental measurements on artificial low resistivity shaly sand samples,symmetrical anisotropic effective medium theory for resistivity interpretations,and geneses and conductance mechanisms of low resistivity reservoirs.By analyzing effects of some factors on the proposed model,we show theoretically the model can describe conductance mechanisms of low resistivity reservoirs with five geneses.Also,shale distribution largely affects water saturation predicted by the model.Resistivity index decreases as fraction and conductivity of laminated shale,or fraction of dispersed clay,or conductivity of rock matrix grains increases.Resistivity index decreases as matrix percolation exponent,or percolation rate of capillary bound water increases,and as percolation exponent of capillary bound water,or matrix percolation rate,or free water percolation rate decreases.Rock sample data from low resistivity reservoirs with different geneses and interpretation results for log data show that the proposed model can be applied in low resistivity reservoirs containing high salinity water,dispersed clay,microscopic capillary pores,laminated shale and conductive matrix grains,and thus is considered as a generalized resistivity model for low resistivity reservoir evaluation.  相似文献   
69.
兰州九州台四种绿化树种抗旱性机理比较研究   总被引:18,自引:6,他引:12  
在不同土壤水分条件下对兰州市九州台四种绿化树种柠条(Caragana korshinskii Kom.)、沙枣(Elaeagnus angustifolia L.)、沙冬青(Ammopiptanthus mongolicus Cheng f.)和刺槐(Robinia pseudoacacia L.)的多项抗旱性生理指标进行了测定,结果表明: ①在不同土壤水分条件下柠条和沙枣的水分饱和亏、束缚水、束缚水/自由水比值、叶绿素含量、脯氨酸含量均高于沙冬青和刺槐,而水势较低。②沙枣一日内的蒸腾速率、气孔导度低于其他三种树种,水分利用率高于其他三种树种。(3)用隶属函数法对四种树种的水分生理参数进行综合评价,结果表明柠条的抗旱性最强,其次为沙枣,沙冬青,刺槐最小。  相似文献   
70.
Canopy conductance (gc) is a key regulating factor of carbon, water and heat exchange between vegetation and atmosphere. Reliable and reasonable gc estimation is of great significance for quantifying evapotranspiration (ET) mass and energy exchange at terrestrial surface. Based on the Jarvis model, a canopy conductance model of agroecosystem in an irrigated oasis, located in arid regions of Northwestern China, was formulated by using the time-piecewise functions of the response of leaf stomatal conductance (gs) to environmental factors and Leaf Area Index (LAI). The developed gc model was tested with the calculated results derived from the inversion of the Penman-Monteith (PM) equation, in combination with observations of environmental variables and ET measured by the Eddy Covariance (EC) method, suggesting that the developed gc model can provide reasonable prediction. In order to further assess the performance of the developed gc model, we consequently calculated ET under the conditions that LAI was larger than three, indicating that the estimation was in good agreement with the observations from EC method. It should be noted that the scaling leaf stomatal conductance to canopy conductance needs to take into account shelter factor (fs), and the corresponding function relation with LAI is obtained by fitting. These results from our present study will provide a useful approach to quantifying the gc of agroecosystems under the well-watered conditions in arid climatic areas, and then can improve the performance of ET estimation, which have important implications for well understanding the controlling mechanisms of plant on energy exchange and ET, and even for local water resources management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号