首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15892篇
  免费   2817篇
  国内免费   4665篇
测绘学   697篇
大气科学   6953篇
地球物理   1769篇
地质学   5279篇
海洋学   1355篇
天文学   5153篇
综合类   633篇
自然地理   1535篇
  2024年   103篇
  2023年   260篇
  2022年   493篇
  2021年   592篇
  2020年   636篇
  2019年   811篇
  2018年   580篇
  2017年   639篇
  2016年   624篇
  2015年   732篇
  2014年   1105篇
  2013年   1181篇
  2012年   1159篇
  2011年   1247篇
  2010年   1179篇
  2009年   1557篇
  2008年   1394篇
  2007年   1446篇
  2006年   1304篇
  2005年   1086篇
  2004年   913篇
  2003年   792篇
  2002年   589篇
  2001年   556篇
  2000年   492篇
  1999年   410篇
  1998年   302篇
  1997年   170篇
  1996年   166篇
  1995年   148篇
  1994年   138篇
  1993年   136篇
  1992年   64篇
  1991年   69篇
  1990年   48篇
  1989年   45篇
  1988年   40篇
  1987年   11篇
  1986年   21篇
  1985年   27篇
  1984年   22篇
  1983年   17篇
  1982年   17篇
  1981年   7篇
  1980年   16篇
  1979年   3篇
  1978年   5篇
  1977年   17篇
  1877年   1篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
青藏高原近40年来的降水变化特征   总被引:21,自引:7,他引:21  
张磊  缪启龙 《干旱区地理》2007,30(2):240-246
利用我国青藏高原地区的1961-2000年56个气象站的逐月降水资料,通过计算降水量的距平百分率,分析了青藏高原自1961至2000年以来降水量变化的趋势和1961-2000年以来各季降水量变化趋势,发现:青藏高原近40年来降水量呈增加趋势,降水量的线性增长率约为1.12mm/a。再将高原划分为四个季节,分析了各季40年来的降水量的变化情况得出:春季降水量年际变化较大,秋季降水量变化不明显。夏季降水量值较大而降水变化幅度较小,冬季降水量变化则与夏季相反。通过将青藏高原分为南北两个地区,分析了两个区的年降水量和四个季节的降水量的变化得出:高原南区1961-2000年降水量呈增加的趋势,降水量的线增长率为1.97 mm/a,春季和冬季降水量年际变化较大,夏季降水量变化不明显,秋季降水量略有增加;北区年降水量和夏季的降水量变化较小,秋季降水量的年际变化较大,冬季降水量变化最大。对青藏高原的南北两区用Mann-Kendall方法进行突变分析,显示高原南区分别在1978年和1994年发生突变,北区没有发现突变。  相似文献   
912.
We applied an image correlation method to Japanese Earth Resources Satellite-1 (JERS-1) synthetic aperture radar (SAR) data obtained from 1996 to 1998 to examine flow velocity within Shirase Glacier, Antarctica. From the grounding line to the downstream region of the glacier, the obtained ice-flow velocity was systematically higher on the western streamline than the eastern. The differences between the two streamlines were 0.31 km/a in 1996 and 0.37 km/a in 1998, significantly larger than the error estimate of 0.03 km/a. The direction of ice flow was about 312° at the grounding line and changed to 327° at 10 km, 346° at 20 km and 2° at 30 km downstream from the grounding line. The total accumulated deflection is 50° to the east. Under the assumption of the conservation of ice mass across the glacier, the observed eastward change in flow direction can be explained by an asymmetric deepening of bedrock topography, that is, across the 8 km width of the glacier, the eastern side is 50 m (10%) deeper than the western side. This eastward turning of flow direction appears to be accelerated by tributary inlets, that flow to the north and northeast at 60–75% of the velocity of inlets on the western streamline.  相似文献   
913.
天气雷达的发展大致经历了4个阶段,其主要用于监测强对流天气、定量估计降水,是气象部门的重要探测和监测手段之一。新一代天气雷达观测的实时回波强度(Z)、径向风速(V)、速度谱宽(W)的回波图像中,提供了丰富的有关强对流天气的信息,综合使用Z、V、W的图像分析,有利于较准确和及时地监测灾害性天气。云南滑坡泥石流灾害高发区与云南暴雨中心有很好的对应关系,云南滑坡泥石流灾害空间分布与暴雨空间分布的空间相关系数为0.19,通过了0.05的显著性水平检验,也进一步说明云南暴雨在滑坡泥石流灾害发生中起着重要作用。以2004年7月5日德宏州特大山洪泥石流灾害为例子,探讨了新一代天气雷达在泥石流灾害的临阵预警中的应用。  相似文献   
914.
A new measurement technique enables the complex dielectric properties of the geological strata comprising the UG1–UG2 (Upper Group 1–Upper Group 2) unit of the Bushveld Complex in South Africa to be determined with unprecedented detail at radio frequencies (RF). Results of non-destructive laboratory measurements of representative diamond drill core samples from the UG1–UG2 unit are presented at 25 MHz. These data establish that the UG1 and UG2 chromitite layers are embedded in rock strata (norite, pyroxenite and anorthosite) which are translucent in the HF spectral band, whereas the chromitite layers themselves exhibit significant velocity contrast, making them good radar reflectors. The data presented here is useful for calibration of the radar system, and for predicting the range and resolution performance of borehole radars operating in both the hanging and footwalls of the economically important platiniferous UG2 reef.  相似文献   
915.
不同与以往基于最小二乘的多元线性回归方法,本文首次尝试将新型的第二代回归分析方法——偏最小二乘回归分析方法应用到中国区域的降水建模中.利用区域内394个气象观测站建站到2000年45年(及以上)的降水资料,建立了一个简单的年、季降水量和地理、地形因子(包括纬度、经度、地形高程、坡度、坡向和遮蔽度)的关系模型,估算了区域降水量中地理、地形的影响部分,并分析了这种影响的特征.结果表明,用此方法建立的模型能够解释70%以上的因变量的变异,相关系数基本都在0.84以上,经交叉有效性检验,模型的回归效果较显著.分析表明,在多元线性回归不适用的情况下,本文基于偏最小二乘法的简单模型能够比较准确地定性、定量地再现实际降水分布.  相似文献   
916.
The identification of the model discrepancy and skill is crucial when a forecast is issued. The characterization of the model errors for different cumulus parameterization schemes (CPSs) provides more confidence on the model outputs and qualifies which CPSs are to be used for better forecasts. Cases of good/bad skill scores can be isolated and clustered into weather systems to identify the atmospheric structures that cause difficulties to the forecasts. The objective of this work is to study the sensitivity of weather forecast, produced using the PSU-NCAR Mesoscale Model version 5 (MM5) during the launch of an Indian satellite on 5th May, 2005, to the way in which convective processes are parameterized in the model. The real-time MM5 simulations were made for providing the weather conditions near the launch station Sriharikota (SHAR). A total of 10 simulations (each of 48 h) for the period 25th April to 04th May, 2005 over the Indian region and surrounding oceans were made using different CPSs. The 24 h and 48 h model predicted wind, temperature and moisture fields for different CPSs, namely the Kuo, Grell, Kain-Fritsch and Betts-Miller, are statistically evaluated by calculating parameters such as mean bias, root-mean-squares error (RMSE), and correlation coefficients by comparison with radiosonde observation. The performance of the different CPSs, in simulating the area of rainfall is evaluated by calculating bias scores (BSs) and equitable threat scores (ETSs). In order to compute BSs and ETSs the model predicted rainfall is compared with Tropical Rainfall Measuring Mission (TRMM) observed rainfall. It was observed that model simulated wind and temperature fields by all the CPSs are in reasonable agreement with that of radiosonde observation. The RMSE of wind speed, temperature and relative humidity do not show significant differences among the four CPSs. Temperature and relative humidity were overestimated by all the CPSs, while wind speed is underestimated, except in the upper levels. The model predicted moisture fields by all CPSs show substantial disagreement when compared with observation. Grell scheme outperforms the other CPSs in simulating wind speed, temperature and relative humidity, particularly in the upper levels, which implies that representing entrainment/detrainment in the cloud column may not necessarily be a beneficial assumption in tropical atmospheres. It is observed that MM5 overestimates the area of light precipitation, while the area of heavy precipitation is underestimated. The least predictive skill shown by Kuo for light and moderate precipitation asserts that this scheme is more suitable for larger grid scale (>30 km). In the predictive skill for the area of light precipitation the Betts-Miller scheme has a clear edge over the other CPSs. The evaluation of the MM5 model for different CPSs conducted during this study is only for a particular synoptic situation. More detailed studies however, are required to assess the forecast skill of the CPSs for different synoptic situations.  相似文献   
917.
Pre-monsoon rainfall around Kolkata (northeastern part of India) is mostly of convective origin as 80% of the seasonal rainfall is produced by Mesoscale Convective Systems (MCS). Accurate prediction of the intensity and structure of these convective cloud clusters becomes challenging, mostly because the convective clouds within these clusters are short lived and the inaccuracy in the models initial state to represent the mesoscale details of the true atmospheric state. Besides the role in observing the internal structure of the precipitating systems, Doppler Weather Radar (DWR) provides an important data source for mesoscale and microscale weather analysis and forecasting. An attempt has been made to initialize the storm-scale numerical model using retrieved wind fields from single Doppler radar. In the present study, Doppler wind velocities from the Kolkata Doppler weather radar are assimilated into a mesoscale model, MM5 model using the three-dimensional variational data assimilation (3DVAR) system for the prediction of intense convective events that occurred during 0600 UTC on 5 May and 0000 UTC on 7 May, 2005. In order to evaluate the impact of the DWR wind data in simulating these severe storms, three experiments were carried out. The results show that assimilation of Doppler radar wind data has a positive impact on the prediction of intensity, organization and propagation of rain bands associated with these mesoscale convective systems. The assimilation system has to be modified further to incorporate the radar reflectivity data so that simulation of the microphysical and thermodynamic structure of these convective storms can be improved.  相似文献   
918.
Measurements of topsoil magnetic susceptibility are often used for quick assessment of soil contamination of anthropogenic origin, with heavy metals or other pollutants. However, because of complicated correlations between low-field magnetic susceptibility (shortened to magnetic susceptibility) of topsoil and soil pollution, the outcome of a field magnetometry survey can not be related directly to soil pollution. For each case study, the results should be interpreted on their own taking into account not only the type of pollution but also pedogenic, biogenic and environmental factors. In practice, it is very difficult to measure and consider all these factors. Here we illustrate the merit of geostatistical methods, which are focused on the spatial variability of a phenomenon, in the interpretation of soil magnetometry results. This article presents the analysis of spatial variability of top soil layers magnetic susceptibility-within the Upper Silesia Industrial Region (USIR)-using semivariance analysis. It also explains how to adjust the sampling density of field magnetometry measurements to spatial variability of the soil pollution as well as to the spatial scale of the investigated area. For this purpose, the values of magnetic susceptibility have been measured by using various sampling densities at areas of different size located within USIR. This enabled to determine the main scales of magnetic susceptibility spatial variability of soils within USIR using semivariance. A few distinct scales of variability were found from the site scale to a more regional scale. Variability ranges of 30 km, 12 km, and 5 km refer to the large regional scale, whereas smaller ranges of few hundreds down to a few tens of meters, can be attributed to the local (site) scale. In addition, the precision of the measuring campaigns, performed within USIR with different sampling densities, was compared through the analysis of the spatial variability of the soil magnetic susceptibility signal by using ordinary kriging. jarek97@yahoo.com, piotr.fabijanczyk@is.pw.edu.pl  相似文献   
919.
The present work quantifies the erosive processes in the two main substrates (schists–phyllites and granites–gneisses) of the upper Maracujá Basin in the Quadrilátero Ferrífero/MG, Brazil, a region of semi‐humid tropical climate. Two measuring methods of concentration were used: (i) in situ produced 10Be in quartz veins (surface erosion rates) and (ii) 10Be in fluvial sediments (basin erosion rates). The results confirm that (i) erosion tends to be more aggressive close to the headwaters than in the lower parts of the basin and (ii) the region is now affected by dissection. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
920.
Natural bedrock rivers flow in self‐formed channels and form diverse erosional morphologies. The parameters that collectively define channel morphology (e.g. width, slope, bed roughness, bedrock exposure, sediment size distribution) all influence river incision rates and dynamically adjust in poorly understood ways to imposed fluid and sediment fluxes. To explore the mechanics of river incision, we conducted laboratory experiments in which the complexities of natural bedrock channels were reduced to a homogenous brittle substrate (sand and cement), a single sediment size primarily transported as bedload, a single erosion mechanism (abrasion) and sediment‐starved transport conditions. We find that patterns of erosion both create and are sensitive functions of the evolving bed topography because of feedbacks between the turbulent flow field, sediment transport and bottom roughness. Abrasion only occurs where sediment impacts the bed, and so positive feedback occurs between the sediment preferentially drawn to topographic lows by gravity and the further erosion of these lows. However, the spatial focusing of erosion results in tortuous flow paths and erosional forms (inner channels, scoops, potholes), which dissipate flow energy. This energy dissipation is a negative feedback that reduces sediment transport capacity, inhibiting further incision and ultimately leading to channel morphologies adjusted to just transport the imposed sediment load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号