首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1801篇
  免费   117篇
  国内免费   92篇
测绘学   43篇
大气科学   131篇
地球物理   246篇
地质学   229篇
海洋学   35篇
天文学   1234篇
综合类   27篇
自然地理   65篇
  2024年   4篇
  2023年   7篇
  2022年   12篇
  2021年   11篇
  2020年   18篇
  2019年   16篇
  2018年   19篇
  2017年   17篇
  2016年   13篇
  2015年   35篇
  2014年   39篇
  2013年   64篇
  2012年   53篇
  2011年   55篇
  2010年   64篇
  2009年   154篇
  2008年   156篇
  2007年   193篇
  2006年   150篇
  2005年   105篇
  2004年   104篇
  2003年   100篇
  2002年   99篇
  2001年   84篇
  2000年   96篇
  1999年   87篇
  1998年   92篇
  1997年   21篇
  1996年   27篇
  1995年   28篇
  1994年   10篇
  1993年   13篇
  1992年   6篇
  1991年   5篇
  1990年   13篇
  1989年   8篇
  1988年   8篇
  1987年   3篇
  1986年   9篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有2010条查询结果,搜索用时 15 毫秒
141.
In this study we provide the first numerical demonstration of the effects of turbulence on the mean Lorentz force and the resulting formation of large‐scale magnetic structures. Using three‐dimensional direct numerical simulations (DNS) of forced turbulence we show that an imposed mean magnetic field leads to a decrease of the turbulent hydromagnetic pressure and tension. This phenomenon is quantified by determining the relevant functions that relate the sum of the turbulent Reynolds and Maxwell stresses with the Maxwell stress of the mean magnetic field. Using such a parameterization, we show by means of two‐dimensional and three‐dimensional mean‐field numerical modelling that an isentropic density stratified layer becomes unstable in the presence of a uniform imposed magnetic field. This large‐scale instability results in the formation of loop‐like magnetic structures which are concentrated at the top of the stratified layer. In three dimensions these structures resemble the appearance of bipolar magnetic regions in the Sun. The results of DNS and mean‐field numerical modelling are in good agreement with theoretical predictions. We discuss our model in the context of a distributed solar dynamo where active regions and sunspots might be rather shallow phenomena (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
142.
Upcoming large solar telescopes will offer the possibility of unprecedented high resolution observations. However, during periods of non‐ideal seeing such measurements are impossible and alternative programs should be considered to best use the available observing time. We present a synoptic program, currently carried out at the Istituto Ricerche Solari Locarno (IRSOL), to monitor turbulent magnetic fields employing the differential Hanle effect in atomic and molecular lines. This program can be easily adapted for the use at large telescopes exploring new science goals, nowadays impossible to achieve with smaller telescopes. The current, interesting scientific results prove that such programs are worthwhile to be continued and expanded in the future. We calculate the approximately achievable spatial resolution at a large telescope like ATST for polarimetric measurements with a noise level below 5 × 10‐5 and a temporal resolution which is sufficient to explore variations on the granular scale. We show that it would be important to optimize the system for maximal photon throughput and to install a high‐speed camera system to be able to study turbulent magnetic fields with unprecedented accuracy (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
143.
In January 2004 the dust instrument on the Cassini spacecraft detected the first high-velocity grain expelled from Saturn - a so-called stream particle. Prior to Cassini’s arrival at Saturn in July 2004 the instrument registered 801 faint impacts, whose impact signals showed the characteristic features of a high-velocity impact by a tiny grain. The impact rates as well as the directionality of the stream particles clearly correlate with the sector structure of the interplanetary magnetic field (IMF). The Cosmic Dust Analyser (CDA) registered stream particles dominantly during periods when the IMF direction was tangential to the solar wind flow and in the prograde direction. This finding provides clear evidence for a continuous outflow of tiny dust grains with similar properties from the saturnian system. Within the compressed part of co-rotating interaction regions (CIRs) of the IMF, characterized by enhanced magnetic field strength and compressed solar wind plasma, CDA observed impact bursts of faster stream particles. We find that the bursts result from the stream particles being sped up inside the compressed CIR regions. Our analysis of the stream-particle dynamics inside rarefaction regions of the IMF implies that saturnian stream particles have sizes between 2 and 9 nm and exit the saturnian systems closely aligned with the planet’s ring plane with speeds in excess of 70 km s−1.  相似文献   
144.
The high average density and low surface FeO content of the planet Mercury are shown to be consistent with very low oxygen fugacity during core segregation, in the range 3-6 log units below the iron-wüstite buffer. These low oxygen fugacities, and associated high metal content, are characteristic of high-iron enstatite (EH) and Bencubbinite (CB) chondrites, raising the possibility that such materials may have been important building blocks for this planet. With this idea in mind we have explored the internal structure of a Mercury sized planet of EH or CB bulk composition. Phase equilibria in the silicate mantle have been modeled using the thermodynamic calculator p-MELTS, and these simulations suggest that orthopyroxene will be the dominant mantle phase for both EH and CB compositions, with crystalline SiO2 being an important minor phase at all pressures. Simulations for both compositions predict a plagioclase-bearing “crust” at low pressure, significant clinopyroxene also being calculated for the CB bulk composition. Concerning the core, comparison with recent high pressure and high temperature experiments relevant to the formation of enstatite meteorites, suggest that the core of Mercury may contain several wt.% silicon, in addition to sulfur. In light of the pressure of the core-mantle boundary on Mercury (∼7 GPa) and the pressure at which the immiscibility gap in the system Fe-S-Si closes (∼15 GPa) we suggest that Mercury’s core may have a complex shell structure comprising: (i) an outer layer of Fe-S liquid, poor in Si; (ii) a middle layer of Fe-Si liquid, poor in S; and (iii) an inner core of solid metal. The distribution of heat-producing elements between mantle and core, and within a layered core have been quantified. Available data for Th and K suggest that these elements will not enter the core in significant amounts. On the other hand, for the case of U both recently published metal/silicate partitioning data, as well as observations of U distribution in enstatite chondrites, suggest that this element behaves as a chalcophile element at low oxygen fugacity. Using these new data we predict that U will be concentrated in the outer layer of the mercurian core. Heat from the decay of U could thus act to maintain this part of Mercury’s core molten, potentially contributing to the origin of Mercury’s magnetic field. This result contrasts with the Earth where the radioactive decay of U represents a negligible contribution to core heating.  相似文献   
145.
In this study we present a review of low-temperature magnetic properties of alabandite (Fe, Mn)S, daubreelite FeCr2S4, pyrrhotite Fe1−xS and troilite FeS updated with new experimental data. The results indicate that besides FeNi alloys mainly daubreelite with its Curie temperature TC ∼ 150 K and strong induced and remanent magnetizations may be a significant magnetic mineral in cold environments and may complement that of FeNi or even dominate magnetic properties of sulfide rich bodies at temperatures below TC.Comets are known to contain iron-bearing sulfides within dusty fraction and their surfaces are subject to temperature variations in the range of 100-200 K down to the depth of several meters while the cometary interior is thermally stable at several tens of Kelvin which is within the temperature range where alabandite, daubreelite or troilite are “magnetic”. Thus not only FeNi alloys, but also sulfides have to be considered in the interpretation of magnetic data from cometary objects such as will be delivered by Rosetta mission. Modeling indicates that magnetic interactions between cometary nucleus containing iron-bearing sulfides and interplanetary magnetic field would be difficult, but not impossible, to detect from orbit. Rosetta’s Philae lander present on the surface would provide more reliable signal.  相似文献   
146.
Daisuke Kobayashi 《Icarus》2010,210(1):37-42
The crustal magnetic anomalies on Mars may represent hot spot tracks resulting from lithospheric drift on ancient Mars. As evidence, an analysis of lineation patterns derived from the ΔBr magnetic map is presented. The ΔBr map, largely free of external magnetic field effects, allows excellent detail of the magnetic anomaly pattern, particularly in areas of Mars where the field is relatively weak. Using cluster analysis, we show that the elongated anomalies in the martian magnetic field form concentric small circles (parallels of latitude) about two distinct north pole locations. If these pole locations represent ancient spin axes, then tidal force on the early lithosphere by former satellites in retrograde orbits may have pulled the lithosphere in an east-west direction over hot mantle plumes. With an active martian core dynamo, this may have resulted in the observed magnetic anomaly pattern of concentric small circles. As further evidence, we observe that, of the 15 martian giant impact basins that were possibly formed while the core dynamo was active, seven lie along the equators of our two proposed paleopoles. We also find that four other re-magnetized giant impact basins lie along a great circle about the mean magnetic paleopole of Mars. These 11 impact basins, likely the result of fallen retrograde satellite fragments, indicate that Mars once had moons large enough to cause tidal drag on the early martian lithosphere. The results of this study suggest that the magnetic signatures of this tidal interaction have been preserved to the present day.  相似文献   
147.
148.
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases, the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury’s magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury’s magnetosphere.  相似文献   
149.
The “paraboloid” model of Mercury’s magnetospheric magnetic field is used to determine the best-fit magnetospheric current system and internal dipole parameters from magnetic field measurements taken during the first and second MESSENGER flybys of Mercury on 14 January and 6 October 2008. Together with magnetic field measurements taken during the Mariner 10 flybys on 29 March 1974 and 16 March 1975, there exist three low-latitude traversals separated in longitude and one high-latitude encounter. From our model formulation and fitting procedure a Mercury dipole moment of 196 nT ·  (where RM is Mercury’s radius) was determined. The dipole is offset from Mercury’s center by 405 km in the northward direction. The dipole inclination to Mercury’s rotation axis is relatively small, ∼4°, with an eastern longitude of 193° for the dipole northern pole. Our model is based on the a priori assumption that the dipole position and the moment orientation and strength do not change in time. The root mean square (rms) deviation between the Mariner 10 and MESSENGER magnetic field measurements and the predictions of our model for all four flybys is 10.7 nT. For each magnetic field component the rms residual is ∼6 nT or about 1.5% of the maximum measured magnetic field, ∼400 nT. This level of agreement is possible only because the magnetospheric current system parameters have been determined separately for each flyby. The magnetospheric stand-off distance, the distance from the planet’s center to the inner edge of the tail current sheet, the tail lobe magnetic flux, and the displacement of the tail current sheet relative to the Mercury solar-magnetospheric equatorial plane have been determined independently for each flyby. The magnetic flux in the tail lobes varied from 3.8 to 5.9 MWb; the subsolar magnetopause stand-off distance from 1.28 to 1.43 RM; and the distance to the inner edge of the current sheet from 1.23 to 1.32 RM. The differences in the current systems between the first and second MESSENGER flybys are attributed to the effects of strong magnetic reconnection driven by southward interplanetary magnetic field during the latter flyby.  相似文献   
150.
针对宁波地区降承压水引起的周边环境变形问题,结合宁波地区的渗流特征,建立了深基坑降水三维渗流与沉降模型的数学模型。以宁波市东门口站为例,利用抽水试验期间监测数据对水文地质计算参数进行反演,进而对降水运行期间引起的渗流与地面沉降进行趋势预测,并与实测值对比分析,其结果比较吻合。为类似工程的设计、施工及风险控制提供了依据,尤其是对于宁波地区后续轨道交通线路的建设具有长期借鉴作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号