首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3215篇
  免费   471篇
  国内免费   579篇
测绘学   58篇
大气科学   586篇
地球物理   1376篇
地质学   815篇
海洋学   854篇
天文学   23篇
综合类   105篇
自然地理   448篇
  2024年   16篇
  2023年   45篇
  2022年   81篇
  2021年   99篇
  2020年   138篇
  2019年   157篇
  2018年   120篇
  2017年   129篇
  2016年   128篇
  2015年   126篇
  2014年   171篇
  2013年   228篇
  2012年   140篇
  2011年   185篇
  2010年   158篇
  2009年   247篇
  2008年   248篇
  2007年   233篇
  2006年   188篇
  2005年   144篇
  2004年   179篇
  2003年   143篇
  2002年   116篇
  2001年   103篇
  2000年   105篇
  1999年   116篇
  1998年   60篇
  1997年   82篇
  1996年   57篇
  1995年   42篇
  1994年   52篇
  1993年   35篇
  1992年   35篇
  1991年   19篇
  1990年   27篇
  1989年   22篇
  1988年   12篇
  1987年   10篇
  1986年   11篇
  1985年   10篇
  1984年   12篇
  1983年   13篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有4265条查询结果,搜索用时 15 毫秒
41.
Morphodynamic modeling is employed in the present work to predict the long-term evolution (over the next 100 years) of typical sedimentary coasts in the western Russian Arctic. The studied objects are the coasts of Varandey (the Barents Sea), Baydaratskaya Bay and Harasavey (the Kara Sea). The model developed takes into account both the short-term processes (storm events) and long-term factors (for example, changes in sea level, inter-annual variations in gross sediment flux, lack or excess of sediment supply). Predicted and observed morphological changes in coastal profiles are shown to agree well for time scales ranging from weeks to decades. It is revealed that under given environmental conditions, the morphological evolution is strongly influenced by storm surges and associated wind-driven circulation. The water level gradient created by a surge generates a seaward flow at the bed. This outflow is shown to be an important destructive mechanism contributing to the erosion and recession of Arctic coasts. The rate of change is found to depend on both the exposure of the coast (relative to the direction of dominant winds) and its height above the sea. The open coast of Varandey is expected to retreat as much as 300–500 m over 100 years, while recession of the less exposed coasts of Baydaratskaya Bay would not exceed about 100 m/century. If long-term sediment losses are insignificant, the rate of erosion decays with time and the morphodynamic system may tend toward equilibrium. It is concluded that the expected relative sea-level rise (up to 1 m over the nearest 100 years) is non-crucial to the future coastal evolution if an erosion activity is already high enough.  相似文献   
42.
Vertical distribution of anthropogenic carbon content of the water (exDIC) in the Oyashio area just outside of the Kuroshio/Oyashio Interfrontal Zone (K/O Zone) was estimated by the simple 1-D advection-diffusion model calibrated by the distribution of chlorofluorocarbons (CFCs). The average concentration of exDIC for = 26.60–27.00 is multiplied by the volume transport of Oyashio water into the North Pacific Intermediate Water (NPIW) to estimate the annual transport of exDIC into NPIW through K/O Zone. The estimated transport of exDIC was 0.018–0.020 GtC/y, which corresponds to 15% of the whole total exDIC accumulation in the temperate North Pacific. A simple assessment using the NPIW 1-box model indicates that the current study explains at least 70% of the total annual transport of exDIC into NPIW, and that small exDIC sources for NPIW still exists in addition to K/O Zone.  相似文献   
43.
重矿物组合、含量变化和特征矿物的分布及变化规律是沿海泥沙来源和运移趋势判断的重要手段之一。通过对廉州湾南部海域海底表层沉积物的重矿物分析 ,发现该区重矿物分布以北海地角为界 ,其百分含量和特征矿物南北有别 ,可能分别代表不同的物质来源区。其中廉州湾北部南流江流域来沙是该区主要物源 ,运移趋势为自 NE向 SW;地角西南岸段、岭南侧海岸侵蚀及银滩来沙也为该区提供了部分物源 ,运移趋势为绕过冠头岭沿海岸向 N方向运移。由于缺乏北海陆域陆相地层重矿物含量等相关资料 ,暂未做物质来源区的具体判断  相似文献   
44.
底部浮泥表层推移速度分布的ADCP—GPS估测方法   总被引:3,自引:0,他引:3  
ADCP对底跟踪走航观测的流速数据中包含水体底部浮泥、底沙运动信息,对比GPS定位方法算出的水体流速数据可以分离出浮泥相对于GPS定位的运动信号,从而达到对底质推移观测的目的。  相似文献   
45.
The dimensions of sand ripples in full-scale oscillatory flows   总被引:1,自引:0,他引:1  
New large-scale experiments have been carried out in two oscillatory flow tunnels to study ripple regime sand suspension and net sand transport processes in full-scale oscillatory flows. The paper focuses on ripple dimensions and the new data are combined with existing data to make a large dataset of ripple heights and lengths for flows with field-scale amplitudes and periods. A feature of the new experiments is a focus on the effect of flow irregularity. The combined dataset is analysed to examine the range of hydraulic conditions under which oscillatory flow ripples occur, to examine the effects of flow irregularity and ripple three-dimensionality on ripple dimensions and to test and improve existing methods for predicting ripple dimensions.The following are the main conclusions. (1) The highest velocities in a flow time-series play an important role in determining the type of bedform occurring in oscillatory flow. Bedform regime is well characterised by mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth peak velocities in the case of irregular flow. (2) For field-scale flows, sand size is the primary factor determining whether equilibrium ripples will be 2D or 3D. 2D ripples occur when the sand D50 ≥ 0.30 mm and 3D ripples occur when D50 ≤ 0.22 mm (except when the flow orbital diameter is low). (3) Ripple type (2D or 3D) is the same for regular and irregular flows and ripple dimensions produced by equivalent regular and irregular flows follow a similar functional dependence on mobility number, with mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth velocities in the case of irregular flow. For much of the ripple regime, ripple dimensions have weak dependency on mobility number and ripple dimensions are similar for regular and irregular flows with the same flow orbital amplitude. However, differences in ripples produced by equivalent regular and irregular flows become significant at the high mobility end of the ripple regime. (4) Ripple dimensions predicted using the Wiberg and Harris formulae are in poor agreement with measured ripple dimensions from the large-scale experiments. Predictions based on the Mogridge et al. and the Nielsen formulae show better overall agreement with the data but also show systematic differences in cases of 3D ripples and ripples generated by irregular flows. (5) Based on the combined large-scale data, modifications to the Nielsen ripple dimension equations are proposed for the heights and lengths of 2D ripples. The same equations apply to regular and irregular flows, but with mobility number appropriately defined. 3D ripples are generally smaller than 2D ripples and estimates of 3D ripple height and length may be obtained by applying multipliers of 0.55 and 0.73 respectively to the 2D formulae. The proposed modified Nielsen formulae provide an improved fit to the large-scale data, accounting for flow irregularity and ripple three-dimensionality.  相似文献   
46.
湄洲湾泥沙活动及海底冲淤变化   总被引:1,自引:0,他引:1  
湄洲湾沙源少,海水含沙量低,平均值10~20g/m~3。冬季受东北季风及浙闽沿岸流影响,湾口含沙量高,达到34g/m~3;夏季受径流影响,湾内含沙量相对偏高,达到16g/m~3。泥沙的运移趋势:主航道基本朝外,两侧朝里。受强潮流作用,深槽及水下潮流冲沟受到冲刷,斜坡及潮坪略有淤积。  相似文献   
47.
48.
1980—1993年对黄茅海河口湾进行沉积物采样和水流测定及水深测量。根据水动力和地形条件,冲淤分析及Mclaren模型研究河口湾的动力地貌体系、冲淤特征和现代沉积物运移。结果表明:(1)水下地形主要为下泄流或上溯流控制的“深槽-槽沟-浅滩-湾口”的动力地貌体系,反映了河口湾“东进西出”的水流格局;(2)整个河口湾以淤积为主,只有崖门深槽有较明显的优势冲刷特征,并随着崖门深槽向海推移和河口湾“东进西出”水动力作用,黄茅海落潮三角洲相应向西南进积;(3)应用Mclaren模型揭示了黄茅海河口湾现代沉积物运移规律,同样反映了河口湾具有“东进西出”的运移趋势。  相似文献   
49.
The distribution and geochemical composition of suspended-particulate matter (SPM) in the East China Sea (ECS) were investigated during the summer period of high continental runoff to elucidate SPM sources, distribution and cross-shelf transport. The spatial variability of SPM distribution (0.3–6.5 mg l−1) and geochemical composition (POC, Al, Si, Fe, Mn, Ca, Mg and K) in the ECS was pronounced during summer when the continental fluxes of freshwater and terrestrial materials were highest during the year. Under the influences of Changjiang runoff, Kuroshio intrusion, surface production and bottom resuspension, the distribution generally showed strong gradients decreasing seaward for both biogenic and lithogenic materials. Particulate organic carbon was enriched in surface water (mean ∼18%) due to the influence of biological productivity, and was diluted by resuspended and/or laterally-transported materials in bottom water (mean 9.4%). The abundance of lithogenic elements (Al, Si, Fe, Mn) increased toward the bottom, and the distribution correlations were highly significant. Particulate CaCO3 distribution provided evidence that the SPM of the bottom water in the northern part of the study area was likely mixed with sediments originally derived from Huanghe. A distinct benthic nepheloid layer (BNL) was present in all seaward transects of the ECS shelf. Sediment resuspension may be caused by tidal fluctuation and other forcing and be regarded as the principal agent in the formation of BNL. This BNL was likely responsible for the transport of biogenic and lithogenic particles across or along the ECS shelf. Total inventories of SPM, POC and PN are 46, 2.8 and 0.4 Tg, respectively, measured over the total area of 0.45 × 106 km2 of the ECS shelf. Their mean residence times are about 27, 13 and 11 days, respectively. The inventory of SPM in the water column was higher in the northernmost and southernmost transects and lower in the middle transects, reflecting the influences of terrestrial inputs from Changjiang and/or resuspended materials from Huanghe deposits in the north and perhaps from Minjiang and/or Taiwan’s rivers in the south. The distribution and transport patterns of SPM and geochemical elements strongly indicate that continental sources and cross-shelf transport modulate ECS particulate matter in summer.  相似文献   
50.
The characteristics of the Kuroshio axis south of Kyushu, which meanders almost sinusoidally, are clarified in relation to the large meander of the Kuroshio by analyzing water temperature data during 1961–95 and sea level during 1984–95. The shape of the Kuroshio axis south of Kyushu is classified into three categories of small, medium, and large amplitude of meander. The small amplitude category occupies more than a half of the large-meander (LM) period, while the medium amplitude category takes up more than a half of the non-large-meander (NLM) period. Therefore, the amplitude and, in turn, the curvature of the Kuroshio axis is smaller on average during the LM period than the NLM period. The mean Kuroshio axis during the LM period is located farther north at every longitude south of Kyushu than during the NLM period, with a slight difference west of the Tokara Islands and a large difference to the east. A northward shift of the Kuroshio axis in particular east of the Tokara Islands induces small amplitude and curvature of the meandering shape during the LM period. During the NLM period, the meandering shape and position south of Kyushu change little with Kuroshio volume transport. In the LM formation stage, the variation of the Kuroshio axis is small west of the Tokara Islands but large to the east due to a small meander of the Kuroshio. In the LM decay stage, the Kuroshio meanders greatly south of Kyushu and is located stably near the coast southeast of Kyushu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号