首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1209篇
  免费   167篇
  国内免费   78篇
测绘学   2篇
大气科学   103篇
地球物理   445篇
地质学   81篇
海洋学   741篇
天文学   12篇
综合类   9篇
自然地理   61篇
  2022年   6篇
  2021年   14篇
  2020年   18篇
  2019年   60篇
  2018年   19篇
  2017年   52篇
  2016年   45篇
  2015年   49篇
  2014年   41篇
  2013年   31篇
  2012年   24篇
  2011年   88篇
  2010年   55篇
  2009年   92篇
  2008年   159篇
  2007年   117篇
  2006年   57篇
  2005年   40篇
  2004年   43篇
  2003年   65篇
  2002年   64篇
  2001年   48篇
  2000年   50篇
  1999年   40篇
  1998年   32篇
  1997年   24篇
  1996年   18篇
  1995年   14篇
  1994年   16篇
  1993年   19篇
  1992年   14篇
  1991年   11篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1980年   2篇
排序方式: 共有1454条查询结果,搜索用时 15 毫秒
101.
Currently available data on wave pump efficiency is reviewed. The obtainable efficiency is an important consideration in the design of practical devices for the extraction of wave energy and the analysis of natural systems (e.g., coral flats and rip currents). We find that the peak efficiency is 0.5 for very steep (∼ 40–45°) ramps where the waves break over the top of the ramp. For flatter (< 30°) ramps, the breaking process is more gradual and the peak efficiency is less than 0.1. We have identified natural atoll lagoon systems where the flushing is wave driven and successfully modeled it as driven by a wave pump. The same is the case for rip currents. For both of these natural systems, the pump efficiency is around 0.035. In addition a numerical swash model is used to estimate wave pump efficiency and is seen to match the experimental results for natural systems or breaking wave scenario.  相似文献   
102.
In the recent paper by Tai-Wen Hsu, John R.-C. Hsu, Wen-Kai Weng, Swun-Kwang Wang, and Shan-Hwei Ou (Coastal Engineering, 53, 865–877, 2006), the authors derived theoretical formulations for calculating the wave setup and setdown induced by obliquely incident waves on a beach. The derivation of an expression for setdown contains errors which would lead to an imbalance in longshore momentum flux outside the surfzone. We correct their derivation and give results in terms of the radiation stress concept in a general case including an oblique wave incidence. We also point out that the correct form of wave setdown is important to describe the zero-net force in the momentum balance outside the surfzone.  相似文献   
103.
In the recent paper by J.P. Le Roux [Coastal Engineering 54 (2007) 271–277], the author provides a simplified approach to calculating the depth, length, and height of waves at the onset of depth-induced breaking (i.e. at the breaker line). However, the proposed methodology and the comparisons to other methods suffer from a large number of inconsistencies and basic calculation errors. In addition, there are a number of erroneous physical interpretations and many of the conclusions are based on erroneous data. The remaining conclusions are either not new or based on circular logic, such as to render them moot. In the following, we will not attempt to point out all the errors or inconsistencies that we found, instead we focus on major points of contention.  相似文献   
104.
The statistical distribution of wave orbital velocity in intermediate coastal water depth has been quantitatively determined from the comprehensive field velocity data collected near the seabed in this study. Two ocean ADV current meters, which were mounted at 0.5 m above the seabed on two separate stainless steel tripods sitting on the seabed, were used to measure instantaneous water particle velocities at a 2 Hz sampling rate for 17.07 min every hour in two coastal water depths of 11 m and 23 m in nine field deployments over a period of 2 years. The zero-crossing method is applied to analyse the field velocity data collected in each field deployment to obtain a large sample of wave orbital velocity amplitudes of individual waves. Based on the collected field velocity data, it is found that the histogram of instantaneous wave orbital velocities perfectly follows the Gaussian distribution as commonly assumed, while the histogram of wave orbital velocity amplitudes is less accurately described by the Rayleigh distribution than the modified Rayleigh and the Weibull distribution. It is also found that large orbital velocity amplitudes are generally overestimated by the Rayleigh distribution, but well predicted by the modified Rayleigh and the Weibull distribution. The expected value of maximum orbital velocity in a velocity record of finite size is also derived from the three distributions and found to agree well with the present field data.  相似文献   
105.
As a gridless particle method, the MPS (Moving Particle Semi-implicit) method has proven useful in a wide variety of engineering applications including free-surface hydrodynamic flows. Despite its wide range of applicability, the MPS method suffers from some shortcomings such as non-conservation of momentum and spurious pressure fluctuation. By introducing new formulations for the pressure gradient and a new formulation of the source term of the Poisson Pressure Equation (PPE), and by allowing a slight compressibility, we have proposed modified MPS methods for the prediction of wave impact pressure on a coastal structure. The improved performance of the modified methods is shown through the simulation of numerous wave impact problems (including the impacts by a dam break flow, a flip-through and two cases of slightly-breaking waves) in comparison with the experimental data.  相似文献   
106.
For any specific wind speed, waves grow in period, height and length as a function of the wind duration and fetch until maximum values are reached, at which point the waves are considered to be fully developed. Although equations and nomograms exist to predict the parameters of developing waves for shorter fetch or duration conditions at different wind speeds, these either do not incorporate important variables such as the air and water temperature, or do not consider the combined effect of fetch and duration. Here, the wind conditions required for a fully developed sea are calculated from maximum wave heights as determined from the wind speed, together with a published growth law based on the friction velocity. This allows the parameters of developing waves to be estimated for any combination of wind velocity, fetch and duration, while also taking account of atmospheric conditions and water properties.  相似文献   
107.
The highly accurate Boussinesq-type equations of Madsen et al. (Madsen, P.A., Bingham, H.B., Schäffer, H.A., 2003. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: Derivation and analysis. Proc. R. Soc. Lond. A 459, 1075–1104; Madsen, P.A., Fuhrman, D.R., Wang, B., 2006. A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Eng. 53, 487–504); Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective structures. Coast. Eng. 53, 929–945) are re-derived in a more general framework which establishes the correct relationship between the model in a velocity formulation and a velocity potential formulation. Although most work with this model has used the velocity formulation, the potential formulation is of interest because it reduces the computational effort by approximately a factor of two and facilitates a coupling to other potential flow solvers. A new shoaling enhancement operator is introduced to derive new models (in both formulations) with a velocity profile which is always consistent with the kinematic bottom boundary condition. The true behaviour of the velocity potential formulation with respect to linear shoaling is given for the first time, correcting errors made by Jamois et al. (Jamois, E., Fuhrman, D.R., Bingham, H.B., Molin, B., 2006. Wave-structure interactions and nonlinear wave processes on the weather side of reflective structures. Coast. Eng. 53, 929–945). An exact infinite series solution for the potential is obtained via a Taylor expansion about an arbitrary vertical position zˆ. For practical implementation however, the solution is expanded based on a slow variation of zˆ and terms are retained to first-order. With shoaling enhancement, the new models obtain a comparable accuracy in linear shoaling to the original velocity formulation. General consistency relations are also derived which are convenient for verifying that the differential operators satisfy a potential flow and/or conserve mass up to the order of truncation of the model. The performance of the new formulation is validated using computations of linear and nonlinear shoaling problems. The behaviour on a rapidly varying bathymetry is also checked using linear wave reflection from a shelf and Bragg scattering from an undulating bottom. Although the new models perform equally well for Bragg scattering they fail earlier than the existing model for reflection/transmission problems in very deep water.  相似文献   
108.
The method of Wang [Wang, Y.-H., 2007. Formula for predicting bedload transport rate in oscillatory sheet flow. Coastal Engineering 54, 594–601] to predict the wave friction factor is discussed. At the threshold of sediment entrainment the proposed equation produces a wide scatter of data points when plotted against an equation based on the Shields parameter. It is shown that a better correlation coefficient can be obtained by calculating the critical wave friction factor directly from the wave period, as well as the sediment and water properties.  相似文献   
109.
A numerical scheme for solving the class of extended Boussinesq equations is presented. Unlike previous schemes, where the governing equations are integrated through time using a fourth-order method, a second-order Godunov-type scheme is used thus saving storage and computational resources. The spatial derivatives are discretised using a combination of finite-volume and finite-difference methods. A fourth-order MUSCL reconstruction technique is used to compute the values at the cell interfaces for use in the local Riemann problems, whilst the bed source and dispersion terms are discretised using centred finite-differences of up to fourth-order accuracy. Numerical results show that the class of extended Boussinesq equations can be accurately solved without the need for a fourth-order time discretisation, thus improving the computational speed of Boussinesq-type numerical models. The numerical scheme has been applied to model a number of standard test cases for the extended Boussinesq equations and comparisons made to physical wave flume experiments.  相似文献   
110.
The decomposition of a monochromatic wave over a submerged plate is investigated experimentally in a wave flume. Bound and free higher harmonic modes propagating upstream and downstream the structure are discriminated by means of moving resistive probes. The first-order analysis shows a resonant behaviour linked to the ratio of the plate's width and the fundamental mode wavelength over the plate. The second-order analysis shows an energy transfer from the fundamental mode towards free harmonics propagating downstream the structure. This transfer is linked to the ratio of the width of the plate and the bound harmonic wavelength over the plate. We also performed experiments with a submerged step to compare the efficiency of both structures. The submerged plate is shown to be a more efficient breakwater than the step, at the first as well as the second-order.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号