首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9441篇
  免费   1799篇
  国内免费   2292篇
测绘学   266篇
大气科学   3859篇
地球物理   1933篇
地质学   3183篇
海洋学   1072篇
天文学   240篇
综合类   424篇
自然地理   2555篇
  2024年   52篇
  2023年   112篇
  2022年   297篇
  2021年   456篇
  2020年   469篇
  2019年   491篇
  2018年   417篇
  2017年   474篇
  2016年   455篇
  2015年   492篇
  2014年   649篇
  2013年   1027篇
  2012年   619篇
  2011年   588篇
  2010年   535篇
  2009年   683篇
  2008年   692篇
  2007年   630篇
  2006年   602篇
  2005年   528篇
  2004年   480篇
  2003年   434篇
  2002年   368篇
  2001年   299篇
  2000年   296篇
  1999年   233篇
  1998年   226篇
  1997年   196篇
  1996年   167篇
  1995年   125篇
  1994年   112篇
  1993年   72篇
  1992年   57篇
  1991年   48篇
  1990年   37篇
  1989年   20篇
  1988年   26篇
  1987年   16篇
  1986年   14篇
  1985年   15篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Relationships were examined between variability in tropical Atlantic sea level and major climate indices with the use of TOPEX/POSEIDON altimeter and island tide gauge data with the aim of learning more about the external influences on the variability of the tropical Atlantic ocean. Possible important connections were found between indices related to the El Niño–Southern Oscillation (ENSO) and the sea levels in all three tropical regions (north, equatorial, and south), although the existence of only one major ENSO event within the decade of available altimetry means that a more complete investigation of the ENSO-dependence of Atlantic sea level changes has to await for the compilation of longer data sets. An additional link was found with the Indian Ocean Dipole (IOD) in the equatorial region, this perhaps surprising observation is probably an artifact of the similarity between IOD and ENSO time series in the 1990s. No evidence was obtained for significant correlations between tropical Atlantic sea level and North Atlantic Oscillation or Antarctic Oscillation Index. The most intriguing relationship observed was between the Quasi-Biennial Oscillation and sea level in a band centered approximately on 10°S. A plausible explanation for the relationship is lacking, but possibilities for further research are suggested.  相似文献   
962.
Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity.  相似文献   
963.
Archaeoseismic research contributes important data on past earthquakes. A limitation of the usefulness of archaeoseismology is due to the lack of continuous discussion about the methodology. The methodological issues are particularly important because archaeoseismological investigations of past earthquakes make use of a large variety of methods. Typical in situ investigations include: (1) reconstruction of the local archaeological stratigraphy aimed at defining the correct position and chronology of a destruction layer, presumably related to an earthquake; (2) analysis of the deformations potentially due to seismic shaking or secondary earthquake effects, detectable on walls; (3) analysis of the depositional characteristics of the collapsed material; (4) investigations of the local geology and geomorphology to define possible natural cause(s) of the destruction; (5) investigations of the local factors affecting the ground motion amplifications; and (6) estimation of the dynamic excitation, which affected the site under investigation. Subsequently, a ‘territorial’ approach testing evidence of synchronous destruction in a certain region may delineate the extent of the area struck by the earthquake. The most reliable results of an archaeoseismological investigation are obtained by application of modern geoarchaeological practice (archaeological stratigraphy plus geological–geomorphological data), with the addition of a geophysical-engineering quantitative approach and (if available) historical information. This gives a basic dataset necessary to perform quantitative analyses which, in turn, corroborate the archaeoseismic hypothesis. Since archaeoseismological investigations can reveal the possible natural causes of destruction at a site, they contribute to the wider field of environmental archaeology, that seeks to define the history of the relationship between humans and the environment. Finally, through the improvement of the knowledge on the past seismicity, these studies can contribute to the regional estimation of seismic hazard.  相似文献   
964.
Atmospheric electrification is not a purely terrestrial phenomenon: all Solar System planetary atmospheres become slightly electrified by cosmic ray ionisation. There is evidence for lightning on Jupiter, Saturn, Uranus and Neptune, and it is possible on Mars, Venus and Titan. Controversy surrounds the role of atmospheric electricity in physical climate processes on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This paper reviews the theory, and, where available, measurements, of planetary atmospheric electricity which is taken to include ion production and ion–aerosol interactions. The conditions necessary for a planetary atmospheric electric circuit similar to Earth’s, and the likelihood of meeting these conditions in other planetary atmospheres, are briefly discussed. Atmospheric electrification could be important throughout the solar system, particularly at the outer planets which receive little solar radiation, increasing the relative significance of electrical forces. Nucleation onto atmospheric ions has been predicted to affect the evolution and lifetime of haze layers on Titan, Neptune and Triton. Atmospheric electrical processes on Titan, before the arrival of the Huygens probe, are summarised. For planets closer to Earth, heating from solar radiation dominates atmospheric circulations. However, Mars may have a global circuit analogous to the terrestrial model, but based on electrical discharges from dust storms. There is an increasing need for direct measurements of planetary atmospheric electrification, in particular on Mars, to assess the risk for future unmanned and manned missions. Theoretical understanding could be increased by cross-disciplinary work to modify and update models and parameterisations initially developed for a specific atmosphere, to make them more broadly applicable to other planetary atmospheres.  相似文献   
965.
To reconstruct the recent climate history in Kamchatka, a series of repeated precise temperature logs were performed in a number of boreholes located in a broad east-west strip (between 52 and 54°N) in the central part of Kamchatka west of Petropavlovsk-Kamchatski. Within three years more than 30 temperature logs were performed in 10 holes (one up to six logs per hole) to the depth of up to 400 metres. Measured temperature gradients varied in a broad interval 0 to 60 mK/m and in some holes a sizeable variation in the subsurface temperatures due to advective heat transport by underground water was observed. Measured data were compared with older temperature profiles obtained in the early eighties by Sugrobov and Yanovsky (1993). Even when older data are of poorer precision (accuracy of about 0.1 K), they presented valuable information of the subsurface temperature conditions existing 20–25 years ago. Borehole observations and the inverted ground surface temperature histories (GSTHs) used for the paleoclimate reconstruction were complemented with a detailed survey of meteorological data. Namely, the long-term surface air temperature (SAT) and precipitation records from Petropavlovsk station (in operation since 1890) were used together with similar data from a number of local subsidiary meteo-stations operating in Central Kamchatka since 1950. Regardless of extreme complexity of the local meteorological/climate conditions, diversity of borehole sites and calibration of measuring devices used during the whole campaign, the results of the climate reconstruction supported a general warming of about 1 K characteristic for the 20th century, which followed an inexpressive cooler period typical for the most of the 19th century. In the last three to four decades the warming rate has been locally increasing up to 0.02 K/year. It was also shown that the snow cover played a dominant role in the penetration of the climate “signal” to depth and could considerably smooth down the subsurface response to the changes occurred on the surface.  相似文献   
966.
967.
968.
In phase Ⅱ of the Regional Climate Model Inter-comparison Project (RMIP) for Asia, the regional climate has been simulated for July 1988 through December 1998 by five regional climate models and one global variable resolution model. Comparison of the 10-year simulated precipitation with the observations was carried out. The results show that most models have the capacity to reproduce the basic spatial pattern of precipitation for Asia, and the main rainbelt can be reproduced by most models, but there are distinctions in the location and the intensity. Most models overestimate the precipitation over most continental regions. Interannual variability of the precipitation can also be basically simulated, while differences exist between various models and the observations. The biases in the stream field are important reasons behind the simulation errors of the Regional Climate Models (RCMs). The cumulus scheme and land surface process have large influences on the precipitation simulation. Generally, the Grell cumulus scheme produces more precipitation than the Kuo scheme.  相似文献   
969.
A new East Asian subtropical summer monsoon circulation index is defined, where the barotropic and baroclinic components of circulation are included. Results show that this index can well indicate the interannual variability of summer precipitation and temperature anomalies in China. A strong monsoon is characterized by more rainfall in the Yellow River basin and northern China, less rainfall in the Yangtze River basin, and more rainfall in south and southeast China, in association with higher temperature in most areas of China. Furthermore, comparison is made between the index proposed in this paper and other monsoon indexes in representing climate anomalies in China.  相似文献   
970.
利用黑龙江省1961~2003年逐日气象资料,采用世界粮食研究模型(WOFOST)和气候变化趋势分析的数学方法,分析了气候变化趋势对小麦产量变化趋势的影响.在黑龙江省中部、东部和北部相对湿润的小麦种植区域,辐射量降低趋势是小麦模拟产量降低趋势的主要气候原因;在松嫩平原西南部的齐齐哈尔市、大庆市和哈尔滨市,降水量增加的趋势是小麦模拟产量增加趋势的主要气候原因;在西北部的北安、五大连池、克山和克东4县,辐射量增加趋势是小麦模拟产量增加趋势的主要气候原因;黑龙江省小麦模拟产量变化趋势百分率的平均值为-1.57%/10a.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号