首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31715篇
  免费   5714篇
  国内免费   9786篇
测绘学   1806篇
大气科学   11617篇
地球物理   4808篇
地质学   12012篇
海洋学   5346篇
天文学   5621篇
综合类   1981篇
自然地理   4024篇
  2024年   163篇
  2023年   455篇
  2022年   999篇
  2021年   1279篇
  2020年   1290篇
  2019年   1618篇
  2018年   1256篇
  2017年   1322篇
  2016年   1362篇
  2015年   1551篇
  2014年   2138篇
  2013年   2313篇
  2012年   2307篇
  2011年   2330篇
  2010年   2133篇
  2009年   2608篇
  2008年   2433篇
  2007年   2609篇
  2006年   2343篇
  2005年   2118篇
  2004年   1785篇
  2003年   1539篇
  2002年   1264篇
  2001年   1183篇
  2000年   1118篇
  1999年   964篇
  1998年   860篇
  1997年   656篇
  1996年   554篇
  1995年   476篇
  1994年   460篇
  1993年   372篇
  1992年   287篇
  1991年   236篇
  1990年   157篇
  1989年   128篇
  1988年   112篇
  1987年   54篇
  1986年   65篇
  1985年   70篇
  1984年   52篇
  1983年   47篇
  1982年   38篇
  1981年   32篇
  1980年   24篇
  1979年   3篇
  1978年   18篇
  1977年   21篇
  1972年   2篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter. This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position. Supported by the National Basic Research Program of China (No. G1999043809) and the National Science Foundation of China (No. 49736190).  相似文献   
122.
对武汉区域气象中心并行计算机系统进行了详细地介绍,分析了并行计算机体系结构、网络和存储系统特点;给出了在并行计算机SP上实现数值预报业务并行化的部分结果;对数值预报模式在串、并行编程环境下的结果进行了分析比较。  相似文献   
123.
通过对影响能见度的因素的分析,提出了一种能见度预报方法-综合分析法,极大地提高了能见度的预报准确率。  相似文献   
124.
125.
126.
127.
128.
129.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号