首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2897篇
  免费   1024篇
  国内免费   381篇
测绘学   219篇
大气科学   237篇
地球物理   1633篇
地质学   1221篇
海洋学   194篇
天文学   15篇
综合类   251篇
自然地理   532篇
  2024年   9篇
  2023年   31篇
  2022年   90篇
  2021年   129篇
  2020年   127篇
  2019年   185篇
  2018年   128篇
  2017年   160篇
  2016年   154篇
  2015年   188篇
  2014年   206篇
  2013年   176篇
  2012年   180篇
  2011年   180篇
  2010年   132篇
  2009年   167篇
  2008年   164篇
  2007年   206篇
  2006年   175篇
  2005年   155篇
  2004年   153篇
  2003年   137篇
  2002年   118篇
  2001年   86篇
  2000年   80篇
  1999年   87篇
  1998年   96篇
  1997年   92篇
  1996年   91篇
  1995年   70篇
  1994年   54篇
  1993年   63篇
  1992年   50篇
  1991年   41篇
  1990年   34篇
  1989年   23篇
  1988年   28篇
  1987年   18篇
  1986年   16篇
  1985年   3篇
  1982年   1篇
  1980年   2篇
  1979年   4篇
  1974年   1篇
  1954年   12篇
排序方式: 共有4302条查询结果,搜索用时 15 毫秒
121.
122.
123.
124.
Inversion for elastic parameters in weakly anisotropic media   总被引:1,自引:0,他引:1  
  相似文献   
125.
126.
Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L1 are determined simultaneously with deep seismic sounding data in Changbaishan Tianchi volcanic region, and then its Poisson's ratio is obtained. Calculated results show that this technique overcomes some defects of traditional forward calculation method, and it is also very effective to determine Poisson's ratio distribution of deep seismic sounding profile, especially useful for study on volcanic magma and crustal fault zone. Study result indicates that there is an abnormally high Poisson's ratio body that is about 30 km wide and 12 km high in the low velocity region under Tianchi crater. Its value of Poisson's ratio is 8% higher than that of surrounding medium and it should be the magma chamber formed from melted rock with high temperature. There is a high Poisson's ratio zone ranging from magma chamber to the top of crust, which may be the uprise passage of hot substance. The lower part with high Poisson's ratio, which stretches downward to Moho, is possibly the extrusion way of hot substance from the uppermost mantle. The conclusions above are consistent with the study results of both tomographic determination of 3D crustal structure and magnetotelluric survey in this region.  相似文献   
127.
If the site at which receiver functions are constructed is filled by sediments, then the waveforms from these receiver functions are dominantly controlled by the sedimentary structures within the first few seconds after the direct P arrival. Based on this observation, waveform data collected at 44 temporary seismic stations have been used to image the sedimentary structure of the Bohai Bay Basin, a major continental petroliferous basin in Eastern China. An adapted hybrid global waveform inversion method was applied to the receiver functions to extract structural information beneath each of the stations. The derived S-velocity structure provides for the first time, a basin-scale seismic image of detailed sedimentary stratification. The sedimentary cover of the basin is about 2-12 km thick, consisting of Cenozoic, Mesozoic, and Paleozoic strata from top to bottom. The structural features presented in the S-velocity image coincide quite well with the depression-uplift type of tectonic system in the Bohai Bay Basin. The reconstructed morphology of the sedimentary layers provides seismological evidence for the two-stage evolution of the intracontinental basin that were caused by an intensive tectonic regime transition in late Mesozoic immediately following the lithospheric reforming of the Eastern China continent.  相似文献   
128.
Introduction The research on the structure and physical property of ancient hidden hill, igneous rocks and basement is relatively difficult by using seismic data only. If we combine seismic data, magneto-telluric (MT) data and geophysical data together, better results can be obtained for the above problem. A number of geophysicists at home and abroad, such as CHEN and WANG (1990), Siri-punvarapor and Egbert (2000) have tried many methods to solve the problem by the inversion of seismic da…  相似文献   
129.
Introduction Ready and Renkin (1971) were the first to make the research on anisotropy problems in magnetotellurics (MT). The progress in the research is not evident because it is more complex and difficult than isotropic problems. Now, the one-dimensional (1D) anisotropy problems in MT have been well solved, while for the two-dimensional (2D) cases, the numerical solutions have only been obtained for some particular conditions (Ready and Renkin, 1975). As to the three-dimensional (3D) ani…  相似文献   
130.
Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L 1 are determined simultaneously with deep seismic sounding data in Changbaishan Tianchi volcanic region, and then its Poisson’s ratio is obtained. Calculated results show that this technique overcomes some defects of traditional forward calculation method, and it is also very effective to determine Poisson’s ratio distribution of deep seismic sounding profile, especially useful for study on volcanic magma and crustal fault zone. Study result indicates that there is an abnormally high Poisson’s ratio body that is about 30 km wide and 12 km high in the low velocity region under Tianchi crater. Its value of Poisson’s ratio is 8% higher than that of surrounding medium and it should be the magma chamber formed from melted rock with high temperature. There is a high Poisson’s ratio zone ranging from magma chamber to the top of crust, which may be the uprise passage of hot substance. The lower part with high Poisson’s ratio, which stretches downward to Moho, is possibly the extrusion way of hot substance from the uppermost mantle. The conclusions above are consistent with the study results of both tomographic determination of 3D crustal structure and magnetotelluric survey in this region. Foundation item: Key Project from China Earthquake Administration and the Project (95-11-02-01) from Ministry of Science and Technology (2001DIA10003). Contribution No. RCEG200401, Geophysical Exploration Center, China Earthquake Administration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号