首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2078篇
  免费   378篇
  国内免费   609篇
测绘学   114篇
大气科学   685篇
地球物理   368篇
地质学   1002篇
海洋学   390篇
天文学   40篇
综合类   122篇
自然地理   344篇
  2024年   13篇
  2023年   27篇
  2022年   69篇
  2021年   88篇
  2020年   77篇
  2019年   106篇
  2018年   97篇
  2017年   87篇
  2016年   83篇
  2015年   95篇
  2014年   140篇
  2013年   133篇
  2012年   134篇
  2011年   150篇
  2010年   133篇
  2009年   132篇
  2008年   135篇
  2007年   163篇
  2006年   148篇
  2005年   112篇
  2004年   139篇
  2003年   108篇
  2002年   97篇
  2001年   82篇
  2000年   83篇
  1999年   90篇
  1998年   63篇
  1997年   46篇
  1996年   46篇
  1995年   38篇
  1994年   37篇
  1993年   35篇
  1992年   15篇
  1991年   12篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   10篇
  1986年   8篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1981年   2篇
  1954年   1篇
排序方式: 共有3065条查询结果,搜索用时 46 毫秒
91.
The urban environment modifies the hydrologic cycle resulting in increased runoff rates, volumes, and peak flows. Green infrastructure, which uses best management practices (BMPs), is a natural system approach used to mitigate the impacts of urbanization onto stormwater runoff. Patterns of stormwater runoff from urban environments are complex, and it is unclear how efficiently green infrastructure will improve the urban water cycle. These challenges arise from issues of scale, the merits of BMPs depend on changes to small‐scale hydrologic processes aggregated up from the neighborhood to the urban watershed. Here, we use a hyper‐resolution (1 m), physically based hydrologic model of the urban hydrologic cycle with explicit inclusion of the built environment. This model represents the changes to hydrology at the BMP scale (~1 m) and represents each individual BMP explicitly to represent response over the urban watershed. Our study varies both the percentage of BMP emplacement and their spatial location for storm events of increasing intensity in an urban watershed. We develop a metric of effectiveness that indicates a nonlinear relationship that is seen between percent BMP emplacement and storm intensity. Results indicate that BMP effectiveness varies with spatial location and that type and emplacement within the urban watershed may be more important than overall percent.  相似文献   
92.
高分二号卫星影像融合方法探析   总被引:2,自引:0,他引:2  
图像融合技术是卫星影像处理过程中的一个重要步骤,它可以将全色影像的高空间分辨率特点与多光谱影像的高光谱分辨率特点有机地结合起来,使得融合后的影像更利于后续解译。由于融合处理方法的原理以及获取影像的传感器特性不同,不同的卫星影像适合于不同的融合方法。针对高分二号卫星影像的特点,本文采用Gram-Schmidt融合法、FIHS变换方法、HPF方法、Pansharp方法进行试验。实验结果表明:HPF方法所得融合结果在光谱特性保持方法性能最优,而Pansharp方法融合结果在信息量的保持以及清晰度方面效果更优,因此,在实际应用中,应根据具体需求进行方法选择。  相似文献   
93.
以非岩溶区林地为对比,分析了桂林毛村岩溶区4种不同植被类型土壤微生物数量及碳酸酐酶(CA)活性的季度动态变化规律,发现以下主要结果:1随着植被的正向演替,岩溶区弃耕地、草地、灌丛及林地微生物数量及CA活性逐渐升高,微生物总数从64.07×10~4cfu/g上升到178.23×10~4cfu/g,CA活性从0.77 U/g上升到1.82 U/g,岩溶区林地大于非岩溶区林地。2在岩溶区不同植被类型,微生物组成均表现为细菌最多(平均值95.14%),放线菌次之(平均值2.79%),真菌数量最少(平均值1.75%)。而在非岩溶区表现为细菌最多(平均值90.95%),真菌次之(平均值5.32%),放线菌最少(平均值3.73%)。3微生物数量季节动态整体表现为春季至夏季逐渐上升,至秋季达到最高,冬季下降,微生物总数的增长依赖于细菌的倍数增长,真菌和放线菌影响较小。CA活性整体表现为夏季和冬季低于春季和秋季,秋季达到最大值。4 CA活性与细菌及微生物总数呈极显著的正相关,表明土壤CA主要来源于细菌的分泌。  相似文献   
94.
Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6–7 November 2009 in the Beijing and Tianjin area. The seeding effect and its physical mechanism were studied. The results indicate that when seeding fog with salt particles sized 80 μm and at a quantity of 6 gm~(-2) at the fog top, the seeding effect near the ground surface layer is negative in the beginning period, and then a positive seeding effect begins to appear at 18 min, with the best effect appearing at 21 min after seeding operation. The positive effect can last about 35 min. The microphysical mechanism of the warm fog dissipation is because of the evaporation due to the water vapor condensation on the salt particles and coalescence with salt particles.The process of fog water coalescence with salt particles contributed mostly to this warm fog dissipation. Furthermore, two series of sensitivity experiments were performed to study the seeding effect under different seeding amounts and salt particles sizes. The results show that seeding fog with salt particles sized of 80 μm can have the best seeding effect, and the seeding effect is negative when the salt particle size is less than 10 μm. For salt particles sized 80 μm, the best seeding effect, with corresponding visibility of 380 m, can be achieved when the seeding amount is 30 g m~(-2).  相似文献   
95.
This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfalling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions (“initials”, hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required.  相似文献   
96.
GRAPES(Globe and Regional Assimilation and Prediction System)变分系统能够同化常规资料和非常规卫星资料,这些被同化的资料究竟对同化系统得到的分析场有何影响,目前国内外尚未见相关的研究文献。为此,首次采用基于信息熵信号自由度思想,诊断风云三号B星(FY3B)红外分光计(Infrared Atmospheric Sounder,IRAS)资料对GRAPES分析场的影响。诊断过程中,采用数值逼近方法,统计2012年12月24日18时到2013年1月22日00时共114个时次IRAS资料对GRAPES分析场影响,结果表明,IRAS中高层通道亮温资料对GRAPES分析场影响比地表通道20观测亮温的影响大,地表通道8和9观测亮温对分析场影响较大。前24个GRAPES变分同化时次每个时次IRAS通道亮温对分析场影响的贡献率分析结果显示,高层通道和H_2O通道贡献率较大。个例分析结果表明,在同化探空资料基础上加入IRAS资料后,温度和湿度增量场变化幅度较大,表明IRAS资料对分析场有降温和增湿作用。  相似文献   
97.
新一代天气雷达技术保障中,发射机高压负载打火导致的综合故障的诊断和定位是比较复杂的,具有故障点多、故障涉及组件多、故障修复时间长等特点,是新一代天气雷达故障维修的难点。依据发射机高压控制和监控信号流程,提出了发射机高压打火组件级故障诊断流程。通过发射机组件级故障诊断流程快速修复发射机高压负载打火综合故障过程,表明发射机高压打火组件级故障诊断流程在雷达维修中具有规范化和适用性维修效果,进一步显示出故障分析诊断流程在新一代天气雷达技术保障中的重要作用。  相似文献   
98.
巫兆聪  巫远  张熠  杨帆 《测绘学报》2016,45(7):841-849
传统光学卫星国土观测覆盖评估建立在卫星对地理想覆盖的基础上,并未考虑卫星存储、星地数据传输、观测时长等物理量及观测区域气象因素对于覆盖性能的影响。本文针对光学遥感卫星的国土观测需求.建立国土观测有效覆盖能力评估指标体系,根据卫星数据存储能力、星地数据传输能力、卫星单圈最大观测时长、卫星观测太阳高度角等性能参数,提出了基于物理性能约束下的有效覆盖计算方法。根据气象台站历年气象数据,提出了气象约束因子的计算方法。综合考虑卫星物理性能约束与观测区域气象约束,计算光学遥感卫星对地观测有效覆盖能力。最后根据专家设计的光学遥感卫星国土观测有效覆盖能力评估指标权重,利用层次分析法(AHP)评估光学遥感卫星系统对于国土观测的需求满足程度。试验结果表明,本文方法对于国土观测有效覆盖的估算和评价结果更加精确,更接近于国土观测的实际应用需求,为对地观测有效覆盖能力评估提供了一种更为精确的可行方案。  相似文献   
99.
水权交易对生态环境影响研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
在经济社会发展受到区域水资源总量限制的情况下,水权交易作为解决当今世界严峻水资源危机的重要手段之一,已在国内外进行了广泛的实践。水权交易改变了水资源的时空配置,对水生态和水环境产生有利或不利的影响,然而关于水权交易对生态环境影响的研究尚未有系统的梳理。总结了水权交易对水资源系统影响研究的主要发展历程,着重论述了水权交易对水资源系统影响的4个重点研究方面:可交易生态环境水权的研究、水权交易对水量、水生态、水环境影响的研究。未来应当加强水权交易对生态环境影响的定量研究,进一步提升水权交易对水质、地下水、退水、陆生生态环境影响的研究,明确不同交易类型的不同影响,还应考虑不确定性因素的影响。  相似文献   
100.
水库溯源冲刷试验是评估在水库速降水位过程中,结合工程控制条件、水沙条件、冲刷时机和初始水库蓄水条件等因素,研究支流拦门沙坎破坏程度对干流溯源冲刷的影响。采用按照水库高含沙模型相似律建立的小浪底水库实体模型开展了4个组次的水库降水库区发生溯源冲刷的试验,第1~4组次库容恢复率依次为11.6%、6.8%、12.2%和6.6%。拦门沙坎破坏越严重,水量越大,库区溯源冲刷量越大,库容恢复率大;侵蚀基准面越低,库区溯源冲刷量大,库容恢复率大;库区淤积量42.00亿m3时采用降低水位引起库区发生溯源冲刷优于库区淤积量32.00亿m3。对原有的陕西水利科学研究所与清华大学的逐日溯源冲刷公式在考虑支流促因的基础上进行了改进,说明支流蓄水量进入干流越多,引起支流口以下的干流河段冲刷量越大,其计算结果与实测值满足生产实践精度,可作为多沙河流水库调水调沙方案制定参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号