首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27235篇
  免费   4347篇
  国内免费   7062篇
测绘学   1657篇
大气科学   8053篇
地球物理   4561篇
地质学   9460篇
海洋学   4202篇
天文学   5417篇
综合类   1447篇
自然地理   3847篇
  2024年   156篇
  2023年   434篇
  2022年   880篇
  2021年   1061篇
  2020年   1111篇
  2019年   1420篇
  2018年   1042篇
  2017年   1167篇
  2016年   1182篇
  2015年   1339篇
  2014年   1796篇
  2013年   1968篇
  2012年   1906篇
  2011年   1964篇
  2010年   1811篇
  2009年   2228篇
  2008年   2049篇
  2007年   2178篇
  2006年   1953篇
  2005年   1617篇
  2004年   1392篇
  2003年   1193篇
  2002年   985篇
  2001年   878篇
  2000年   836篇
  1999年   694篇
  1998年   550篇
  1997年   463篇
  1996年   401篇
  1995年   353篇
  1994年   301篇
  1993年   269篇
  1992年   226篇
  1991年   171篇
  1990年   128篇
  1989年   109篇
  1988年   86篇
  1987年   36篇
  1986年   50篇
  1985年   63篇
  1984年   36篇
  1983年   40篇
  1982年   31篇
  1981年   21篇
  1980年   20篇
  1979年   7篇
  1978年   15篇
  1977年   17篇
  1976年   3篇
  1972年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
161.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

162.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

163.
164.
实验条件对X射线衍射物相定量分析结果的影响   总被引:8,自引:6,他引:2  
通过实验验证了多物相试样X射线衍射定量分析的基体效应,着重研究了参比强度K值、衍射强度、混合物各物相粒度、X射线管功率等实验条件对物相定量分析结果的影响。结果表明,物相定性分析是定量分析的前提,采用积分强度、使各物相颗粒尽可能细而且均匀、采用较高的X射线管功率以及适合的扫描速率均有利于提高物相X射线衍射定量分析的准确度。  相似文献   
165.
The utility of paleomagnetic data gleaned from the Bhander and Rewa Groups of the “Purana-aged” Vindhyanchal Basin has been hampered by the poor age control associated with these units. Ages assigned to the Upper Vindhyan sequence range from Cambrian to the Mesoproterozoic and are derived from a variety of sources, including 87Sr/86Sr and δ 13C correlations with the global curves and Ediacara-like fossil finds in the Lakheri–Bhander limestone. New analyses of the available paleomagnetic data collected from this study and previous work on the 1073 Ma Majhgawan kimberlite, as well as detrital zircon geochronology of the Upper Bhander sandstone and sandstones from the Marwar SuperGroup suggest that the Upper Vindhyan sequence may be up to 500 Ma older than is commonly thought. Paleomagnetic analysis generated from the Bhander and Rewa Groups yields a paleomagnetic pole at 44°N, 214.0°E (A95 = 4.3°). This paleomagnetic pole closely resembles the VGP from the well-dated Majhgawan intrusion (36.8°N, 212.5°E, α95 = 15.3°).Detrital zircon analysis of the Upper Bhander sandstone identifies a youngest age population at 1020 Ma. A comparison between the previously correlated Upper Bhander sandstone and the Marwar sandstone detrital suites shows virtually no similarities in the youngest detrital suite sampled. The main 840–920 Ma peak is absent in the Upper Bhander. This supports our assertion that the Upper Bhander is older than the 750–771 Ma Malani sequence, and is likely close to the age of the 1073 Ma Majhgawan kimberlite on the basis of the paleomagnetic similarities. By setting the age of the Upper Vindhyan at 1000–1070 Ma, several intriguing possibilities arise. The Bhander–Rewa paleomagnetic pole allows for a reconstruction of India at 1000–1070 Ma that overlaps with the 1073 ± 13.7 Majhgawan kimberlite VGP. Comparisons between the composite Upper Vindhyan pole (43.9°N, 210.2°E, α95 = 12.2°) and the Australian 1071 ± 8 Ma Bangamall Basin sills and the 1070 Ma Alcurra dykes suggest that Australia and India were not adjacent at this time period.  相似文献   
166.
A simple mathematical model for soil nail and soil interaction analysis   总被引:1,自引:0,他引:1  
Soil nails have been widely used to stabilize slopes and earth retaining structures in many countries and regions, especially, in Hong Kong. The analysis of the interaction between a soil nail and the surrounding soil is of great interests to both design engineers and researchers. In this paper, authors present a simple mathematical model for the interaction analysis of a soil nail and the surrounding soil considering a few key factors which are soil dilation, bending of the soil nail, vertical pressure, and non-linear subgrade reaction stiffness. The lateral subgrade reaction between the soil and the soil nail is assumed to obey a hyperbolic relation. Reported test data in the literature are used to verify the present model. The contributions of the soil-nail bending on the pull-out resistance are evaluated in two case studies.  相似文献   
167.
本文对冀北—辽西地区早白垩世沉积盆地富有机质沉积岩进行了初步有机地球化学分析研究。结果显示,冀北—辽西沉积盆沉积有机质特征在时间和空间上存在很大差异,代表白垩系早期沉积的滦平盆地大北沟组有机质丰度低,这不仅显示其所代表的沉积相带不利于有机质的聚集,也反映了当时生物不够繁盛;大店子组时期沉积相带发生了变化,有机质类型随着发生了变化,丰度有所增高,但总体上显示环境条件不利于生物的发育和繁盛。到了桥头组和义县组沉积岩有机质丰度大幅升高,表明生物界非常繁盛,古气候环境有利于有机质的大量生成和堆积,总体上反映了温湿的气候条件;但同时也存在较为频繁或交替性寒冷气候波动,具体的古气候环境状态尚需进一步深入研究。  相似文献   
168.
Anoxic nitrification: Evidence from Humber Estuary sediments (UK)   总被引:3,自引:0,他引:3  
Conventional understanding of the nitrogen cycle in marine sediments has changed in recent years with the discovery of an alternative pathway for ammonia oxidation via the reduction of manganese oxides (during anoxic nitrification). In anoxic sediments, the potential for manganese oxides to serve as oxidant for nitrification may be considerable yet previous work on manganese-rich sediments has suggested anoxic nitrification may not be significant. In this study, the potential for anoxic nitrification in a range of sediment types was investigated. Laboratory incubation of sediment from three sites on the Humber Estuary, a microbially diverse environment, showed anoxic accumulation of nitrate, nitrite and dinitrogen gas, with and without the addition of synthetic manganese oxides. Incubation experiments confirmed anoxic nitrification as microbially mediated, with heat-killed controls yielding negative results. The anoxic nitrification reaction significantly depleted ammonia concentrations, and occurred simultaneously with manganese-, iron- and sulphate reduction, and methanogenesis. Taken in conjunction with other studies, results suggest anoxic nitrification may not only be dependent on total manganese concentrations but on manganese dynamics. Anoxic nitrification may be explained as a non-steady state reaction, dependent on the recent stability of a sediment system. Physical perturbation of sediments may cause the redistribution and/or introduction of manganese oxides and promote anoxic nitrification. The significance and persistence of anoxic nitrification is likely to depend on the frequency and magnitude of sediment perturbation, which explains why the reaction varies so widely across studied sites, and why it may not occur in some manganese-rich sediment.  相似文献   
169.
A survey was conducted in an 11-year recovery mobile dune (RMD11) and a 20-year recovery mobile dune (RMD20), in Horqin Sandy Land, Northern China, to determine plant distribution at the mobile dune scale and its relevance to soil properties and topographic features. The results showed that (1) vegetation cover and species number increased from dune top to bottom in the restoration process of mobile dune; (2) the average value of soil organic C, total N, pH, relative height of sampling site, very fine sand content and soil water contents (40−60 and 60−80 cm) of RMD11 were less than that of RMD20, respectively, and there were significant differences (P < 0.05) between the two dunes; (3) soil resources were redistributed by shrub restoration and relative height of sampling site on dune. The distribution of sand pioneer plant, Agriophyllum squarrosum, was positively related to the relative height of sampling site and soil water content, while that of other herbaceous plants was positively related to soil nutrients in the restoration process of mobile dune. These results suggest that at mobile dune scale, plant distributions are determined by a combination of soil properties and topographic feature. Much effort should be made to preserve the interdune lowland and to improve the level of soil nutrients on mobile dune.  相似文献   
170.
This paper presents the results of a comparative study relating to the application of four vulnerability mapping methods, GOD, AVI, DRASTIC and SINTACS, in a pilot detritic aquifer situated in NW Morocco, known as the Martil–Alila aquifer. The principal objective of this work is to determine the most suitable such methods for this aquifer type within a Mediterranean context, and to show the effect of the rainfall variations that are characteristic of the Mediterranean climate on the degree of vulnerability. The methods applied distinguish five classes of vulnerability, these being irregularly divided up in space, with the division varying according to the method in question. The vulnerability maps obtained by the different methods strongly suggest that the eastern half of the aquifer is more vulnerable to contamination than the western half, for all hydrological situations. The effect of climatic conditions on the degree of vulnerability is well represented by the DRASTIC, according to which the aquifer is moderately to strongly vulnerable during humid hydrological years and weakly to moderately vulnerable during dry ones. For the other methods, this climatic effect is limited to the area occupied by the two predominant classes (“High” and “Low” for GOD and “High” and “Moderate” for SINTACS) while it is null for AVI. In conclusion, DRASTIC appears the most suitable for mapping the vulnerability to contamination of Mediterranean coastal detritic aquifers such as the Martil–Alila aquifer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号