首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2647篇
  免费   390篇
  国内免费   169篇
测绘学   325篇
大气科学   106篇
地球物理   683篇
地质学   733篇
海洋学   95篇
天文学   11篇
综合类   176篇
自然地理   1077篇
  2024年   2篇
  2023年   17篇
  2022年   100篇
  2021年   92篇
  2020年   125篇
  2019年   146篇
  2018年   129篇
  2017年   141篇
  2016年   142篇
  2015年   127篇
  2014年   166篇
  2013年   215篇
  2012年   124篇
  2011年   138篇
  2010年   125篇
  2009年   131篇
  2008年   118篇
  2007年   134篇
  2006年   153篇
  2005年   116篇
  2004年   111篇
  2003年   96篇
  2002年   70篇
  2001年   62篇
  2000年   69篇
  1999年   61篇
  1998年   35篇
  1997年   44篇
  1996年   51篇
  1995年   37篇
  1994年   19篇
  1993年   22篇
  1992年   13篇
  1991年   10篇
  1990年   12篇
  1989年   3篇
  1988年   12篇
  1987年   9篇
  1986年   12篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有3206条查询结果,搜索用时 125 毫秒
81.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
82.
The present study investigates propagation of a cohesive crack in non‐isothermal unsaturated porous medium under mode I conditions. Basic points of skeleton deformation, moisture, and heat transfer for unsaturated porous medium are presented. Boundary conditions on the crack surface that consist of mechanical interaction of the crack and the porous medium, water, and heat flows through the crack are taken into consideration. For spatial discretization, the extended finite element method is used. This method uses enriched shape functions in addition to ordinary shape functions for approximation of displacement, pressure, and temperature fields. The Heaviside step function and the distance function are exploited as enrichment functions for representing the crack surfaces displacement and the discontinuous vertical gradients of the pressure and temperature fields along the crack, respectively. For temporal discretization, backward finite difference scheme is applied. Problems solved from the literature show the validity of the model as well as the dependency of structural response on the material properties and loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
83.
The hydrologic response of engineered media plays an important role in determining a stormwater control measure's ability to reduce runoff volume, flow rate, timing, and pollutant loads. Five engineered media, typical of living roof and bioretention stormwater control measures, were investigated in laboratory column experiments for their hydrologic responses to steady, large inflow rates. The inflow, medium water content response, and outflow were all measured. The water flow mechanism (uniform flow vs. preferential flow) was investigated by analyzing medium water content response in terms of timing, magnitude, and sequence with depth. Modeling the hydrologic process was conducted in the HYDRUS‐1D software, applying the Richards equation for uniform flow modeling, and a mobile–immobile model for preferential flow modeling. Uniform flow existed in most cases, including all initially dry living roof media with bimodal pore size distributions and one bioretention medium with unimodal pore size distribution. The Richards equation can predict the outflow hydrograph reasonably well for uniform flow conditions when medium hydraulic properties are adequately represented by appropriate functions. Preferential flow was found in two media with bimodal pore size distributions. The occurrence of preferential flow is more likely due to the interaction between the bimodal pore structure and the initial water content rather than the large inflow rate.  相似文献   
84.
The effective stress concept for solid‐fluid 2‐phase media was revisited in this work. In particular, the effects of the compressibility of both the pore fluid and the soil particles were studied under 3 different conditions, i.e., undrained, drained, and unjacketed conditions based on a Biot‐type theory for 2‐phase porous media. It was confirmed that Terzaghi effective stress holds at the moment when soil grains are assumed to be incompressible and when the compressibility of the pore fluid is small enough compared to that of the soil skeleton. Then, isotropic compression tests for dry sand under undrained conditions were conducted within the triaxial apparatus in which the changes in the pore air pressure could be measured. The ratio of the increment in the cell pressure to the increment in the pore air pressure, m, corresponds to the inverse of the B value by Bishop and was obtained during the step loading of the cell pressure. In addition, the m values were evaluated by comparing them with theoretically obtained values based on the solid‐fluid 2‐phase mixture theory. The experimental m values were close to the theoretical values, as they were in the range of approximately 40 to 185, depending on the cell pressure. Finally, it was found that the soil material with a highly compressible pore fluid, such as air, must be analyzed with the multi‐phase porous mixture theory. However, Terzaghi effective stress is practically applicable when the compressibilities of both the soil particles and the pore fluid are small enough compared to that of the soil skeleton.  相似文献   
85.
This paper reports improvements to algorithms for the simulation of 3-D hydraulic fracturing with the Generalized Finite Element Method (GFEM). Three optimizations are presented and analyzed. First, an improved initial guess based on solving a 3-D elastic problem with the pressure from the previous step is shown to decrease the number of Newton iterations and increase robustness. Second, an improved methodology to find the time step that leads to fracture propagation is proposed and shown to decrease significantly the number of iterations. Third, reduced computational cost is observed by properly recycling the linear part of the coupled stiffness matrix. Two representative examples are used to analyze these improvements. Additionally, a methodology to include the leak-off term is presented and verified against asymptotic analytical solutions. Conservation of mass is shown to be well satisfied in all examples.  相似文献   
86.
Analytical solutions for advection and dispersion of a conservative solute in a one‐dimensional double‐layered finite porous media are presented. The solutions are applicable to five scenarios that have various combinations of fixed concentration, fixed flux and zero concentration gradient conditions at the inlet and outlet boundaries that provide a wide number of options. Arbitrary initial solute concentration distributions throughout the media can be considered via explicit formulations or numerical integration. The analytical solutions presented have been verified against numerical solutions from a finite‐element‐based approach and an existing closed‐form solution for double‐layered media with an excellent correlation being found in both cases. A practical application pertaining to advective transport induced by consolidation of underlying sediment layers on contaminant movement within a capped contaminated sediment system is presented. Comparison of the calculated concentrations and fluxes with alternative approaches clearly illustrates the need to consider advection processes. Consideration of the different features of contaminant transport due to varying pore‐water velocity fields in primary consolidation and secondary consolidation stages is achieved via the use of non‐uniform initial concentration distributions within the proposed analytical solutions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
87.
以完善的云环境建设为支撑,以构建标准安全的防护体系为保障,以时空信息云平台建设为基础,以智慧应用建设为重点,促成跨域、跨部门、跨层级的数据融合,提高城市综合智能化水平,使城市运转更加高效、敏捷、低碳与和谐。  相似文献   
88.
MODerate resolution atmospheric TRANsmission (MODTRAN) is a commercial remote sensing (RS) software package that has been widely used to simulate radiative transfer of electromagnetic radiation through the Earth's atmosphere and the radiation observed by a remote sensor. However, when very large RS datasets must be processed in simulation applications at a global scale, it is extremely time-consuming to operate MODTRAN on a modern workstation. Under this circumstance, the use of parallel cluster computing to speed up the process becomes vital to this time-consuming task. This paper presents PMODTRAN, an implementation of a parallel task-scheduling algorithm based on MODTRAN. PMODTRAN was able to reduce the processing time of the test cases used here from over 4.4 months on a workstation to less than a week on a local computer cluster. In addition, PMODTRAN can distribute tasks with different levels of granularity and has some extra features, such as dynamic load balancing and parameter checking.  相似文献   
89.
This paper presents a granular computing approach to spatial classification and prediction of land cover classes using rough set variable precision methods. In particular, it presents an approach to characterizing large spatially clustered data sets to discover knowledge in multi-source supervised classification. The evidential structure of spatial classification is founded on the notions of equivalence relations of rough set theory. It allows expressing spatial concepts in terms of approximation space wherein a decision class can be approximated through the partition of boundary regions. The paper also identifies how approximate reasoning can be introduced by using variable precision rough sets in the context of land cover characterization. The rough set theory is applied to demonstrate an empirical application and the predictive performance is compared with popular baseline machine learning algorithms. A comparison shows that the predictive performance of the rough set rule induction is slightly higher than the decision tree and significantly outperforms the baseline models such as neural network, naïve Bayesian and support vector machine methods.  相似文献   
90.
Since it was first proposed in 2000, the concept of the Anthropocene has evolved in breadth and diversely. The concept encapsulates the new and unprecedented planetary-scale changes resulting from societal transformations and has brought to the fore the social drivers of global change. The concept has revealed tensions between generalized interpretations of humanity’s contribution to global change, and interpretations that are historically, politically and culturally situated. It motivates deep ethical questions about the politics and economics of global change, including diverse interpretations of past causes and future possibilities. As such, more than other concepts, the Anthropocene concept has brought front-and-center epistemological divides between and within the natural and social sciences, and the humanities. It has also brought new opportunities for collaboration. Here we explore the potential and challenges of the concept to encourage integrative understandings of global change and sustainability. Based on bibliometric analysis and literature review, we discuss the now wide acceptance of the term, its interpretive flexibility, the emerging narratives as well as the debates the concept has inspired. We argue that without truly collaborative and integrative research, many of the critical exchanges around the concept are likely to perpetuate fragmented research agendas and to reinforce disciplinary boundaries. This means appreciating the strengths and limitations of different knowledge domains, approaches and perspectives, with the concept of the Anthropocene serving as a bridge, which we encourage researchers and others to cross. This calls for institutional arrangements that facilitate collaborative research, training, and action, yet also depends on more robust and sustained funding for such activities. To illustrate, we briefly discuss three overarching global change problems where novel types of collaborative research could make a difference: (1) Emergent properties of socioecological systems; (2) Urbanization and resource nexus; and (3) Systemic risks and tipping points. Creative tensions around the Anthropocene concept can help the research community to move toward new conceptual syntheses and integrative action-oriented approaches that are needed to producing useful knowledge commensurable with the challenges of global change and sustainability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号