首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   44篇
  国内免费   125篇
大气科学   64篇
地球物理   33篇
地质学   211篇
海洋学   62篇
天文学   1篇
综合类   17篇
自然地理   40篇
  2024年   3篇
  2023年   1篇
  2022年   7篇
  2021年   10篇
  2020年   12篇
  2019年   17篇
  2018年   9篇
  2017年   7篇
  2016年   14篇
  2015年   17篇
  2014年   30篇
  2013年   16篇
  2012年   8篇
  2011年   19篇
  2010年   16篇
  2009年   24篇
  2008年   20篇
  2007年   18篇
  2006年   21篇
  2005年   20篇
  2004年   17篇
  2003年   13篇
  2002年   9篇
  2001年   12篇
  2000年   15篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有428条查询结果,搜索用时 31 毫秒
21.
The source of sulfur in giant Norilsk-type sulfide deposits is discussed. A review of the state of the problem and a critical analysis of existing hypotheses are made. The distribution of δ34S in sulfides of ore occurrences and small and large deposits and in normal sedimentary, metamorphogenic, and hypogene sulfates is considered. A large number of new δ34S data for sulfides and sulfates in various deposits, volcanic and terrigenous rocks, coals, graphites, and metasomatites are presented. The main attention is focused on the objects of the Norilsk and Kureika ore districts. The δ34S value varies from -14 to + 22.5‰ in sulfides of rocks and ores and from 15.3 to 33‰ in anhydrites. In sulfide-sulfate intergrowths and assemblages, δ34S is within 4.2-14.6‰ in sulfides and within 15.3-21.3‰ in anhydrites. The most isotopically heavy sulfur was found in pyrrhotite veins in basalts (δ34S = 21.6‰), in sulfate veins cutting dolomites (δ34S = 33‰), and in subsidence caldera sulfates in basalts (δ34S = 23.2-25.2‰). Sulfide ores of the Tsentral’naya Shilki intrusion have a heavy sulfur isotope composition (δ34S = + 17.7‰ (n = 15)). Thermobarogeochemical studies of anhydrites have revealed inclusions of different types with homogenization temperatures ranging from 685 °C to 80 °C. Metamorphogenic and hypogene anhydrites are associated with a carbonaceous substance, and hypogene anhydrites have inclusions of chloride-containing salt melts. We assume that sulfur in the trap sulfide deposits was introduced with sulfates of sedimentary rocks (δ34S = 22-24‰). No assimilation of sulfates by basaltic melt took place. The sedimentary anhydrites were “steamed” by hydrocarbons, which led to sulfate reduction and δ34S fractionation. As a result, isotopically light sulfur accumulated in sulfides and hydrogen sulfide, isotopically heavy sulfur was removed by aqueous calcium sulfate solution, and “residual” metamorphogenic anhydrite acquired a lighter sulfur isotope composition as compared with the sedimentary one. The wide variations in δ34S in sulfides and sulfates are due to changes in the physicochemical parameters of the ore-forming system (first of all, temperature and Pch4) during the sulfate reduction. The regional hydrocarbon resources were sufficient for large-scale ore formation.  相似文献   
22.
Hydrothermal dolomite commonly closely associates with oil-gas reservoirs and sediment-hosted Pb-Zn deposits, the Mississippi Valley-type (MVT) Pb-Zn deposits in particular. Host rocks of MVT deposits usually experienced extensive dolomitization, and indeed, hydrothermal dolomite is considered as a useful prospective indicator for MVT mineralization. However, genetic link between the hydrothermal dolomitization and MVT Pb-Zn mineralization is a matter of debate. This paper briefly reviewed the nomenclature and research history of hydrothermal dolomite, introduced the major geological, geochemical characteristics, and distribution of hydrothermal dolomite, spatial and possibly genetic relationship between hdyrothermal dolomite and hdyrothermal ore deposits and oil-gas reservoirs based on case studies including the occurrence of hydrothermal dolomites in MVT deposits in Southwest China. The temporal and genetic relationships between dolomitizaiton and thermal sulfate reduction, sulfide precipitation and thus the location of ore mineralization well worthy more attention, and comprehensive geological and isotope geochemical and state of art in situ techniques will contribute to understanding of the genesis of hydrotherml dolomite and the spatially related ore deposits and oil-gas reservoirs. © 2018, Science Press. All right reserved.  相似文献   
23.
李鹏  刘全有  毕赫  孟庆强 《地质学报》2021,95(3):632-642
黑色富有机质页岩是页岩油气生成和赋存的主要母体,是强还原环境水体的沉积产物,在其形成过程中,细菌硫酸盐还原作用(BSR)对水体环境影响明显,但BSR强度如何影响有机质的保存尚未得到关注。我国陆相湖盆富有机质泥页岩广泛发育,形成过程中常常伴随有火山活动或者海侵等事件,大量硫酸盐进入湖盆,改变水体的沉积环境,不同环境下BSR对黑色页岩有机质保存的影响明显不同。本次研究选取鄂尔多斯盆地延长组长7段页岩、松辽盆地青山口组和嫩江组页岩作为对象,同时与现代沉积物进行对比。研究表明,TOC与TS之间关系复杂,但细菌硫酸盐还原强度指数(SRI)与TOC呈现幂指数变化,且表现出两阶段变化的特征。当SRI大于1.375时,TOC整体偏低,指示了强硫酸盐还原作用消耗大量有机质;当SRI小于1.375时,TOC明显较高,指示了弱硫酸盐还原作用对有机质消耗相对较少,更有利于有机质保存。火山活动和海侵作用均向水体提供了大量硫酸盐,但对陆相湖盆页岩中有机质的保存影响不同。火山活动影响的长7段页岩SRI普遍小于1.375,BSR对有机质消耗相对弱,页岩TOC高。而受海侵影响的青山口组一段底部和嫩江组一段底部页岩SRI大于1.375,BSR过度消耗了大量有机质,使得页岩TOC偏低。嫩江组一段下部SRI指数更高,海侵强度更大,BSR反应更强,更不利于有机质保存。  相似文献   
24.
Annual wet deposition of excess sulfate at Macquarie Island has been estimated from 5 months of rainwater composition data covering the Austral summer of 1985/86. The resulting figure of 2.1±0.6 mmol/m2/yr is at the low end of previous estimates of maritime excess sulfate deposition by precipitation. Within estimated uncertainty limits this figure is consistent with the DMS emission flux which would be predicted for latitude 50°–60° S, based solely on available Northern Hemispheric DMS measurements.Temporarily at the International Meteorological Institute, Stockholm University, S-106 91, Stockholm, Sweden.  相似文献   
25.
High volume bulk aerosol samples were collected continuously at three Antarctic sites: Mawson (67.60° S, 62.50° E) from 20 February 1987 to 6 January 1992; Palmer Station (64.77° S, 64.06° W) from 3 April 1990 to 15 June 1991; and Marsh (62.18° S, 58.30° W) from 28 March 1990, to 1 May 1991. All samples were analyzed for Na+, SO 4 2– , NO 3 , methanesulfonate (MSA), NH 4 + ,210Pb, and7Be. At Mawson for which we have a multiple year data set, the annual mean concentration of each species sometimes vary significantly from one year to the next: Na+, 68–151 ng m–3; NO 3 , 25–30 ng m–3; nss SO 4 2– , 81–97 ng m–3; MSA, 19–28 ng m–3; NH 4 + , 16–21 ng m–3;210Pb, 0.75–0.86 fCi m–3. Results from multiple variable regression of non-sea-salt (nss) SO 4 2– with MSA and NO 3 as the independent variables indicates that, at Mawson, the nss SO 4 2– /MSA ratio resulting from the oxidation of dimethylsulfide (DMS) is 2.80±0.13, about 13% lower than our earlier estimate (3.22) that was based on 2.5 years of data. A similar analysis indicates that the ratio at Palmer is about 40% lower, 1.71±0.10, and more comparable to previous results over the southern oceans. These results when combined with previously published data suggest that the differences in the ratio may reflect a more rapid loss of MSA relative to nss SO 4 2– during transport over Antarctica from the oceanic source region. The mean210Pb concentrations at Palmer and Marsh and the mean NO 3 concentration at Palmer are about a factor of two lower than those at Mawson. The210Pb distributions are consistent with a210Pb minimum in the marine boundary layer in the region of 40°–60° S. These features and the similar seasonalities of NO 3 and210Pb at Mawson support the conclusion that the primary source regions for NO 3 are continental. In contrast, the mean concentrations of MSA, nss SO 4 2– , and NH 4 + at Palmer are all higher than those at Mawson: MSA by a factor of 2; nss SO 4 2– by 10%; and NH 4 + by more than 50%. However, the factor differences exhibit substantial seasonal variability; the largest differences generally occur during the austral summer when the concentrations of most of the species are highest. NH 4 + /(nss SO 4 2– +MSA) equivalent ratios indicate that NH3 neutralizes about 60% of the sulfur acids during December at both Mawson and Palmer, but only about 30% at Mawson during February and March.  相似文献   
26.
A box model, involving simple heterogeneous reaction processes associated with the production of non-sea-salt sulfate (nss-SO 4 2– ) particles, is used to investigate the oxidation processes of dimethylsulfide (DMS or CH3SCH3) in the marine atmosphere. The model is applied to chemical reactions in the atmospheric surface mixing layer, at intervals of 15 degrees latitude between 60° N and 60° S. Given that the addition reaction of the hydroxyl radical (OH) to the sulfur atom in the DMS molecule is faster at lower temperature than at higher temperature and that it is the predominant pathway for the production of methanesulfonic acid (MSA or CH3SO3H), the results can well explain both the increasing tendency of the molar ratio of MSA to nss-SO 4 2– toward higher latitudes and the uniform distribution with latitude of sulfur dioxide (SO2). The predicted production rate of MSA increases with increasing latitude due to the elevated rate constant of the addition reaction at lower temperature. Since latitudinal distributions of OH concentration and DMS reaction rate with OH are opposite, a uniform production rate of SO2 is realized over the globe. The primary sink of DMS in unpolluted air is caused by the reaction with OH. Reaction of DMS with the nitrate radical (NO3) also reduces DMS concentration but it is less important compared with that of OH. Concentrations of SO2, MSA, and nss-SO 4 2– are almost independent of NO x concentration and radiation field. If dimethylsulfoxide (DMSO or CH3S(O)CH3) is produced by the addition reaction and further converted to sulfuric acid (H2SO4) in an aqueous solution of cloud droplets, the oxidation process of DMSO might be important for the production of aerosol particles containing nss-SO 4 2– at high latitudes.  相似文献   
27.
The major components of the marine boundary layer biogeochemical sulfur cycle were measured simultaneously onshore and off the coast of Washington State, U.S.A. during May 1987. Seawater dimethylsulfide (DMS) concentrations on the continental shelf were strongly influenced by coastal upwelling. Concentration further offshore were typical of summer values (2.2 nmol/L) at this latitude. Although seawater DMS concentrations were high on the biologically productive continental shelf (2–12 nmol/L), this region had no measurable effect on atmospheric DMS concentrations. Atmospheric DMS concentrations (0.1–12 nmol/m3), however, were extremely dependent upon wind speed and boundary layer height. Although there appeared to be an appreciable input of non-sea-salt sulfate to the marine boundary layer from the free troposphere, the local flux of DMS from the ocean to the atmosphere was sufficient to balance the remainder of the sulfur budget.  相似文献   
28.
A field study on the geochemical properties of a chemically-stressed limnic environment was performed in Lake Silbersee, which receives leachate water of high inorganic loading from an upgradient landfill site. The highly concentrated sulfate ion in groundwater, when entering the pore water system of the lake, gives rise to an intensive microbial sulfate reduction. A diagenetic approach was used to explain the existence of a marine-like aqueous system within a geologically slightly acidic aquifer, consisting of a well-buffered lake water and an alkalinity producing, excess sulphide containing sediment pore water system.  相似文献   
29.
刘汉初  倪桃英 《岩矿测试》1991,10(2):123-124
本文对EDTA滴定过量Pb间接测定SO_4~(2-)的方法作了改进。加入乙醇抑制PbSO_4沉淀的溶解,使滴定不需分离沉淀而直接进行。用六次甲基四胺调节控制pH为5.2—5.4,可避免大量共存Ca~(2+)、Mg~(2+)的干扰。改进后的方法简单、快速,准确度和精密度均好,可适用SO_4~(2-)含量高于1mg/L的天然水分析。  相似文献   
30.
The rates and mechanisms of both gas and liquid phase reactions for the oxidation of sulfur dioxide play an important role in the production of atmospheric acids and aerosol particles. Rhodeet al. (1981) concluded that sulfate production rates were highly non-linear functions of sulfur dioxide emission rates. Their modelling study used an HO x termination mechanism for the HO—SO2 reaction in the gas-phase. Stockwell and Calvert (1983) determined that one of the products of the overall reaction of HO with sulfur dioxide was an HO2 radical. The National Research Council (1983) using a version of the Rhodeet al. (1981) model modified to include HO2 production from the HO—SO2 reaction concluded that sulfate production becomes much more linear with respect to reductions in sulfur dioxide emissions. However, the cause of this increased linearity was not explained by the National Research Council report. It is demonstrated that the increased linearity is due to the coupling of gas-phases and aqueous phase chemistry. The gas-phase sulfur dioxide oxidation mechanism has a very significant effect on hydrogen perodide production rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号