首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   840篇
  免费   152篇
  国内免费   204篇
测绘学   47篇
大气科学   151篇
地球物理   219篇
地质学   349篇
海洋学   260篇
天文学   12篇
综合类   55篇
自然地理   103篇
  2024年   4篇
  2023年   11篇
  2022年   24篇
  2021年   25篇
  2020年   34篇
  2019年   27篇
  2018年   25篇
  2017年   39篇
  2016年   34篇
  2015年   39篇
  2014年   49篇
  2013年   49篇
  2012年   35篇
  2011年   45篇
  2010年   51篇
  2009年   68篇
  2008年   63篇
  2007年   52篇
  2006年   64篇
  2005年   47篇
  2004年   46篇
  2003年   36篇
  2002年   43篇
  2001年   31篇
  2000年   35篇
  1999年   34篇
  1998年   25篇
  1997年   33篇
  1996年   27篇
  1995年   11篇
  1994年   15篇
  1993年   22篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   3篇
  1973年   1篇
排序方式: 共有1196条查询结果,搜索用时 250 毫秒
71.
The study by the eddy covariance technique in the alpine shrub meadow of the Qing-hai-Tibet Plateau in 2003 and 2004 showed that the net ecosystem carbon dioxide exchange (NEE) exhibited noticeable diurnal and annual variations, with more distinct daily changes during the warmer seasons. The CO2 emission of the shrub ecosystem culminated in April and September while the CO2 absorption capacity reached a maximum in July and August. The absorbed carbon dioxide during the two consecutive years was 231.4 and 274.8 g CO2·m-2 respectively, yielding an average of 253.1 gCO2·m-2 per year: that accounts for a large proportion of absorbed CO2 in the region. Obviously, the diurnal carbon flux was negatively related to temperature, radiation and other atmospheric factors. Still, minute discrepancies in kurtosis and duration of carbon emission/absorption were detected between 2003 and 2004. It was found that the CO2 flux in the daytime was similarly affected by photosynthetic photon flux density in both years. Temperature appears to be the most important determinant of CO2 flux: specifically, the high temperature during the plant growing season inhibits the carbon absorption capacity. One potential explanation is that soil respiration is enhanced under such condition. Analysis of biomass revealed that the annual net carbon fixed capacity of aboveground and belowground biomass was 544.0 in 2003 and 559.4 g Cm"2 in 2004, which coincided with the NEE absorption capacity (63.1 g C·m-2 in 2003 and 74.9 g C·m-2 in 2004) in the corresponding plant growing season.  相似文献   
72.
Many studies on global climate have forecast major changes in the amounts and spatial patterns of precipitation that may significantly affect temperate grasslands in arid and semi-arid regions. As a part of ChinaFLUX, eddy covariance flux measurements were made at a semi-arid Leymus chinensis steppe in Inner Mongolia, China during 2003-2004 to quantify the response of carbon exchange to environmental changes. Results showed that gross ecosystem production (FGEP) and ecosystem respiration (Reco) of the steppe were significantly depressed by water stress due to lack of precipitation during the growing season. Temperature was the dominant factor affecting FGEP and Reco in 2003, whereas soil moisture imposed a significant influence on both Reco and FGEP in 2004. Under wet conditions, Reco showed an exponentially increasing trend with temperature (Q10 = 2.0), but an apparent reduction in the value of Reco and its temperature sensitivity were observed during the periods of water stress (Q10=1.6). Both heat and water stress can cause decrease in FGEP. The sea-sonality of ecosystem carbon exchange was strongly correlated with the variation of precipitation. With less precipitation in 2003, the steppe sequestrated carbon in June and July, and went into a senescence in early August due to water stress. As compared to 2003, the severe drought during the spring of 2004 delayed the growth of the steppe until late June, and the steppe became a CO2 sink from early July until mid-September, with ample precipitation in August. The semi-arid steppe released a total of 9.7 g C·m-2 from May 16 to the end of September 2003, whereas the net carbon budget during the same period in 2004 was close to zero. Long-term measurements over various grasslands are needed to quantify carbon balance in temperate grasslands.  相似文献   
73.
Typical numerical weather and climate prediction models apply parameterizations to describe the subgrid-scale exchange of moisture, heat and momentum between the surface and the free atmosphere. To a large degree, the underlying assumptions are based on empirical knowledge obtained from measurements in the atmospheric boundary layer over flat and homogeneous topography. It is, however, still unclear what happens if the topography is complex and steep. Not only is the applicability of classical turbulence schemes questionable in principle over such terrain, but mountains additionally induce vertical fluxes on the meso-γ scale. Examples are thermally or mechanically driven valley winds, which are neither resolved nor parameterized by climate models but nevertheless contribute to vertical exchange. Attempts to quantify these processes and to evaluate their impact on climate simulations have so far been scarce. Here, results from a case study in the Riviera Valley in southern Switzerland are presented. In previous work, measurements from the MAP-Riviera field campaign have been used to evaluate and configure a high-resolution large-eddy simulation code (ARPS). This model is here applied with a horizontal grid spacing of 350 m to detect and quantify the relevant exchange processes between the valley atmosphere (i.e. the ground “surface” in a coarse model) and the free atmosphere aloft. As an example, vertical export of moisture is evaluated for three fair-weather summer days. The simulations show that moisture exchange with the free atmosphere is indeed no longer governed by turbulent motions alone. Other mechanisms become important, such as mass export due to topographic narrowing or the interaction of thermally driven cross-valley circulations. Under certain atmospheric conditions, these topographical-related mechanisms exceed the “classical” turbulent contributions a coarse model would see by several times. The study shows that conventional subgrid-scale parameterizations can indeed be far off from reality if applied over complex topography, and that large-eddy simulations could provide a helpful tool for their improvement.  相似文献   
74.
Pao K. Wang   《Atmospheric Research》2007,83(2-4):254-262
The thermodynamic structure on top of a numerically simulated severe storm is examined to explain the satellite observed plume formation above thunderstorm anvils. The same mechanism also explains the formation of jumping cirrus observed by Fujita on board of a research aircraft. A three-dimensional, non-hydrostatic cloud model is used to perform numerical simulation of a supercell that occurred in Montana in 1981. Analysis of the model results shows that both the plume and the jumping cirrus phenomena are produced by the high instability and breaking of the gravity waves excited by the strong convection inside the storm. These mechanisms dramatically enhance the turbulent diffusion process and cause some moisture to detach from the storm cloud and jump into the stratosphere. The thermodynamic structure in terms of the potential temperature isotherms above the simulated thunderstorm is examined to reveal the instability and wave breaking structure. The plumes and jumping cirrus phenomena represent an irreversible transport mechanism of materials from the troposphere to the stratosphere that may have global climatic implications.  相似文献   
75.
A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).  相似文献   
76.
由于数字地震记录仪具有记录频带宽,分辨率高,动态范围大以及易于用计算机处理等优点,所以数字地震台网产出的数字地震资料成为地震活动性,震源机制,地球内部研究,地震监测及预报等的最基本数据源。  相似文献   
77.
The methane concentration in the atmosphere andsurface water was surveyed along 58° N acrossthe North Sea. In addition, the vertical methanedistribution in the water column was determined at sixstations along the transect. The methane contents ofthe surface water as well as in the water column wereextremely inhomogeneous. Input by freshwater fromriver discharge and injection of methane from thesediment were both observed. The survey continued fromthe western side of the North Sea to the Elbe Riverestuary. The Elbe River appears to have low methaneconcentrations compared to other European rivers, itsaverage input into the North Sea is estimated to be70 nmol s-1 of methane. Near 58° N,1°40' E, an abandoned drill site releases about 25 % ofthe North Sea's emission of methane to the atmosphere.The advective methane transport induced by watercirculation was assessed for May 16, 1994, using a 3-DNorth Sea circulation model. For the period of thissurvey, the North Sea's source strength foratmospheric methane is estimated using in situwind velocities. In comparison to the advectivetransport by the water circulation, the gas flux tothe atmosphere appears to be the dominant sink ofNorth Sea methane. This flux is estimated to bebetween 1500 · 106 mol a-1 and 3100 ·106mol a-1, depending on the relationbetween wind speed and gas transfer velocity.  相似文献   
78.
The remediation strategy for an industrial site located in a coastal area involves a pump and treat system and a horizontal flow barrier (HFB) penetrating the main aquifer. To validate the groundwater flow conceptual model and to verify the efficiency of the remediation systems, we carried out piezometric measurements, slug tests, pumping tests, flowmeter tests and multilevel sampling. Flowmeter tests are used to infer vertical groundwater flow directions, and base exchange index is used to infer horizontal flow directions at a metric scale. The selected wells are located both upstream and downstream of the HFB. The installation of the HFB produced constraints to the groundwater flow. A stagnant zone of contaminated freshwater floating over the salt wedge in the upper portion of the aquifer is detected downstream of the HFB. This study confirms that the adopted remediation system is efficiently working in the area upstream of the HFB and even downstream in the bottom part of the aquifer. At the same time, it has also confirmed that hot spots are still present in stagnant zones located downstream of the HFB in the upper part of the aquifer, requiring a different approach to accomplish remediation targets. The integrated approach for flow quantification used in this study allows to discriminate the direction and the magnitude of groundwater fluxes near an HFB in a coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
79.
In our previous study, we developed the Stokes–Darcy (SD) model was developed for flow in a karst aquifer with a conduit bedded in matrix, and the Beavers–Joseph (BJ) condition was used to describe the matrix–conduit interface. We also studied the mathematical well‐posedness of a coupled continuum pipe flow (CCPF) model as well as convergence rates of its finite element approximation. In this study, to compare the SD model with the CCPF model, we used numerical analyses to validate finite element discretisation methods for the two models. Using computational experiments, simulation codes implementing the finite element discretisations are then verified. Further model validation studies are based on the results of laboratory experiments. Comparing the results of computer simulations and experiments, we concluded that the SD model with the Beavers–Joseph interface condition is a valid model for conduit–matrix systems. On the other hand, the CCPF model with the value of the exchange parameter chosen within the range suggested in the literature perhaps does not result in good agreement with experimental observations. We then examined the sensitivity of the CCPF model with respect to the exchange parameter, concluding that, as has previously been noted, the model is highly sensitive for small values of the exchange parameter. However, for larger values, the model becomes less sensitive and, more important, also produces results that are in better agreement with experimental observations. This suggests that the CCPF model may also produce accurate simulation results, if one chooses larger values of the exchange parameter than those suggested in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
80.
Benthic nutrient recycling in shallow coastal waters of the Bohai Sea   总被引:3,自引:0,他引:3  
Sediment-water fluxes of N and P species in the Bohai Sea were investigated in September-October 1998 and April-May 1999. The benthic fluxes of nutrient species were determined by incubating sediment core samples with bottom seawater bubbled with air or nitrogen. NO^-2,NH4, dissolved organic nitrogen (DON) and phosphorus (DOP), total dissolved nitrogen (TDN) and phosphorus (TDP), and PO4^3- showed a net exchange flux from seawater to sediment, while NO^-3, dissolved inorganic nitrogen (DIN) and SiO3^2- were released from sediment to seawater in the Bohai Sea. Sediment-water nutrient exchange increases DIN and reduces the phosphorus load in the Bohai Sea. The release of silicate from sediment to overlying seawater reduces potential silicate limitation of primary production resulted from decrease of riverine discharge.The exchange flux of nutrients showed no obvious seasonal variation. The present study showed that the concentrations and composition of nutrients in the water column were affected by suspended sediment, and that not all the exchangeable phosphate in sediment could be released via sediment resuspension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号