首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   10篇
海洋学   3篇
天文学   1篇
  2022年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2004年   2篇
  2002年   3篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Irgarol 1051, a boosting antifouling agent often used to supplement copper based paints was found in surface waters from South Florida at stations collected from the Miami River, Biscayne Bay and selected areas of the Florida Keys. Concentrations of the herbicide ranged from below the method detection limit (1 ng/L) to as high as 182 ng/L in a canal system in Key Largo. The herbicide was present at 93% of the stations and often found in conjunction with its descyclopropyl metabolite (M1) previously reported to be the major degradation product of Irgarol under natural environmental conditions. The 90th percentile concentration calculated for all South Florida samples was 57.6 ng/L. Based on available data on the toxicity of Irgarol to algae and coral, only two stations (approximately 3%) ranked above the LC50 of 136 ng/L reported for the marine algae Naviculla pelliculosa and above the 100 ng/L level reported to reversibly inhibit photosynthesis of intact corals. However, a basic dissipation model for Irgarol using the Key Largo Harbor station as a point source indicated that concentrations of the herbicide decreased rapidly and concentrations below the MDL are observed within 2000 m of the source. No major coral based benthic habitats are documented for all the stations surveyed at distances that Irgarol may pose a substantial risk. However, other types of submerged vegetation like seagrasses are common around the marinas and the effects of Irgarol to such endpoints should be investigated further.  相似文献   
2.
The presence of booster biocides in the aquatic environment has been associated with a risk to non-target species due to their proven toxicity. The aim of the present study was to determine the spatial and temporal distribution of common booster biocides in different harbours of the island of Gran Canaria (Spain) and evaluate, by means of a probabilistic risk assessment (PRA), the ecological risk posed by these compounds. With these objectives, a monitoring campaign was conducted between January 2008 and May 2009, collecting a total of 182 seawater samples. Four common booster biocides (TCMTB, diuron, Irgarol 1051 and dichlofluanid) were monitored. Diuron levels ranged between 2.3 and 203 ng/L and Irgarol 1051 between 2.4 and 146.5 ng/L. The ecological risk associated with these levels was always low, however, with probabilities of exceeding the 10th percentile of autotroph toxicity below 3.5%.  相似文献   
3.
A mild, low-temperature analytical approach based on sonication assisted extraction coupled with HPLC electrospray ionization triple quadrupole tandem mass spectrometry has been developed for the simultaneous qualitative and quantitative determination of the four Irgarol-related s-triazine species, namely Irgarol-1051, M1, M2 and M3, in coastal sediments and Green-lipped mussel samples. Mild extraction conditions were necessary for the preservation of the thermally unstable M2. The Multiple Reaction Monitoring (MRM) mode of detection by ESI-MS/MS enabled reliable qualitative identification and sensitive quantitative determination of those s-triazines. This determination method was applied to evaluate the degree of Irgarol-1051 contamination in the sediments and biota of the coastal environment of Hong Kong - one of the busiest maritime ports in the world. All the four s-triazine species were observed in all of the samples. This is the first time that the newly identified M2 and M3 are detected in coastal sediments and biota tissues.  相似文献   
4.
《Marine pollution bulletin》2014,78(1-2):201-208
Seawater samples from major enclosed bays, fishing ports, and harbors of Korea were analyzed to determine levels of tributyltin (TBT) and booster biocides, which are antifouling agents used as alternatives to TBT. TBT levels were in the range of not detected (nd) to 23.9 ng Sn/L. Diuron and Irgarol 1051, at concentration ranges of 35–1360 ng/L and nd to 14 ng/L, respectively, were the most common alternative biocides present in seawater, with the highest concentrations detected in fishing ports. Hot spots were identified where TBT levels exceeded environmental quality targets even 6 years after a total ban on its use in Korea. Diuron exceeded the UK environmental quality standard (EQS) value in 73% of the fishing port samples, 64% of the major bays, and 42% of the harbors. Irgarol 1051 levels were marginally below the Dutch and UK EQS values at all sites.  相似文献   
5.
Due to deleterious effects on non-target organisms, the use of organotin compounds on boat hulls of small vessels (<25 m) has been widely prohibited. The International Maritime Organisation (IMO) resolved that the complete prohibition on organotin compounds acting as biocides in antifouling systems should commence in 2008. As a result of restrictions on the use of organotin based paints, other antifouling formulations containing organic biocides have been utilised. This survey was conducted to assess the contamination of replacement biocides in the marine environment following the ban of TBT-based paints. Surface sediments samples were collected in the major ports and marinas along the France Mediterranean coastline (Cote d’Azur) and analysed for organotin compounds, Irgarol 1051, Sea-nine 211TM, Chlorothalonil, Dichlofluanid and Folpet. Every port and marina exhibited high levels of organotin compounds, with concentrations in sediments ranging from 37 ng Sn g−1dry wt in Menton Garavan to over 4000 ng Sn g−1dry wt close to the ship chandler within the port of Villefranche-sur-Mer. TBT degradation indexes suggested that fresh inputs are still made. Among the other antifoulants monitored, only Irgarol 1051 exhibited measurable concentrations in almost every port, with concentrations ranging from 40 ng g−1dry wt (Cannes) to almost 700 ng g−1dry wt (Villefranche-sur-Mer, ship chandler).  相似文献   
6.
《Marine pollution bulletin》2013,77(1-2):360-364
The herbicide irgarol 1051 is commonly used on ship hulls to prevent growth of algae, but as a component of self-eroding paints it can also spread in the surrounding waters and affect non-target organisms. The effect of irgarol on settlement and growth of zoospores from the marine macro algae Ulva lactuca from the Gullmar fjord on the Swedish west coast was investigated in the present study. The zoospores were allowed to settle and grow in the presence of irgarol, but neither settlement – nor growth inhibition was observed at concentrations of up to 2000 nmol l−1. This is between 10 and 100 times higher than effect concentrations reported earlier for algae. Irgarol also induced the greening effect (4-fold increase in chlorophyll a content) in the settled zoospore/germling population, typical for photosystem II inhibitors like irgarol. This study support previous findings that irgarol constitutes a selection pressure in the marine environment.  相似文献   
7.
Irgarol 1051是一种常见的船舶防污剂,主要作用于光系统Ⅱ来抑制藻类在船舶表面的生长.本研究通过模拟原位海洋环境,在考虑阳光紫外辐射的基础上,于室外培养了3种不同粒径的硅藻,光系统Ⅱ初始光化学效率QY均介于0.60~0.70,表明藻细胞活性良好.在短期实验中加入Irgarol后,发现较低质量浓度(0.2μg/L...  相似文献   
8.
UBV measurements of early‐type stars, mostly eclipsing binaries, obtained at La Silla in the years 1990 to 1994 with the ESO 50 cm telescope are presented. Most of these data were already used in our individual studies of several binaries. Now all photometric measurements were reduced again with an advanced technique and are made available electronically. Our data for MY Ser have not yet been published; new light curve is given and solved. The result is that MY Ser is a contact binary, with very large fill‐out parameter. Also a light curve and its solution for V1051 Cen are provided, and the problem of the period of V871 Cen is pointed out. Besides binaries (and the comparison and check stars) data for several stars in southern H II regions are included. Extinction and transformation coefficients are given (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
9.
Surface water samples from marinas, commercial ports and open bay areas collected from Biscayne Bay and the Miami River, Florida, USA, were analyzed for the occurrence of IRGAROL 1051 by GC/MS. The anifouling boosting herbicide was found in 80% (46/57) of the samples collected between March 1999 and September 2000. Concentrations within the bay range between non-detected (<1 ppt) and 61 ppt (ng/L) and were generally low compared with levels reported in European or Japanese waters. Aside from the elevated concentrations observed along the Miami River South Fork (61 ppt), the highest concentrations observed in the bay corresponded to marinas with high density of pleasure craft and restricted water circulation. In contrast, occurrence of IRGAROL 1051 along the commercial port or the cruise line terminal was generally lower (<1-2.2 ppt). Concentrations around Coconut Grove Marina were consistently higher (5-12 ppt) than the rest of the bay waters during the whole period of time surveyed.  相似文献   
10.
International regulation of organotin compounds for use in antifouling paints has led to the development and increased use of replacement compounds, notably the s-triazine herbicide Irgarol 1051. Little is known about the distribution of Irgarol 1051 in tropical waters. Nor has the potential impact of this triazine upon photosynthesis of endosymbiotic microalgae (zooxanthellae) in corals been assessed. In this study Irgarol 1051 was detected in marinas, harbours and coastal waters of the Florida Keys, Bermuda and St. Croix, with concentrations ranging between 3 and 294 ng 1(-1). 14C incubation experiments with isolated zooxanthellae from the common inshore coral Madracis mirabilis showed no incorporation of H14CO3- from the sea water medium after 4-8 h exposure to Irgarol 1051 concentrations as low as 63 ng 1(-1). Reduction in net photosynthesis of intact corals was found at concentrations of l00 ng 1(-1) with little or no photosynthesis at concentrations exceeding 1000 ng 1(-1) after 2-8 h exposure at all irradiances. The data suggest Irgarol 1051 to be both prevalent in tropical marine ecosystems and a potent inhibitor of coral photosynthesis at environmentally relevant concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号