首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6677篇
  免费   1311篇
  国内免费   2576篇
测绘学   663篇
大气科学   5394篇
地球物理   614篇
地质学   1306篇
海洋学   1229篇
天文学   30篇
综合类   297篇
自然地理   1031篇
  2024年   69篇
  2023年   222篇
  2022年   247篇
  2021年   295篇
  2020年   245篇
  2019年   295篇
  2018年   210篇
  2017年   197篇
  2016年   227篇
  2015年   256篇
  2014年   482篇
  2013年   388篇
  2012年   409篇
  2011年   443篇
  2010年   444篇
  2009年   466篇
  2008年   398篇
  2007年   453篇
  2006年   415篇
  2005年   477篇
  2004年   403篇
  2003年   369篇
  2002年   407篇
  2001年   406篇
  2000年   296篇
  1999年   199篇
  1998年   233篇
  1997年   295篇
  1996年   211篇
  1995年   214篇
  1994年   219篇
  1993年   147篇
  1992年   153篇
  1991年   160篇
  1990年   110篇
  1989年   65篇
  1988年   9篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1963年   1篇
  1961年   1篇
  1954年   2篇
  1952年   2篇
  1934年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
海洋在天气、气候及大气环流变化过程中起着重要作用,海洋热源的异常分布是造成长期天气异常的重要原因。海洋对大气的作用主要是通过海气界面的热量交换来实现的,因此,直接运用海气热量交换来考虑海洋对大气的加热作用,分析海洋加热异常对长期天气、气候及大气环流的影响,具有更明确的物理意义。 西北太平洋副热带高压是造成我国旱、涝及天气变化的主要副热带天气系统,对我国夏季气温、雨带位置及强度影响很大。西北太平洋中、低纬副热带地区是海洋向大气提供热量和水汽较多的地区,也是海气相互作用最强烈的海域,这一地区的海洋加热对西北太平洋副热带高压的变化将有直接影响。本文分析了冬季西北太平洋副热带海域海洋加热主要场的分布特征,指出了海洋加热与西北太平洋副热带高压的关系。结果表明,冬季该海域海洋加热较常年偏多时,冬、春至初夏副高偏弱,位置偏东、南(6月副高脊线位置除外);反之,海洋加热较常年偏少时,副高偏强,位置偏西、北(6月副高脊线位置除外)。该海域海洋加热对副热带地区大气环流,尤其是副热带高压环流的变化有着重要作用。本结果对预测西北太平洋副热带高压的变化,研究中纬度海洋加热对西北太平洋副热带高压及其大气环流的影响有十分重要的意义。  相似文献   
32.
当今海洋科学五大热点问题   总被引:6,自引:1,他引:6  
莫杰 《海洋科学》1996,20(6):21-25
进入90年代,一些海洋科技发达国家的海洋调查计划、科学研究项目和国际性学术性讨论会的主题,几乎都集中围绕与人类生存和社会发展密切相关的环境与资源问题。其中最热门的话题可谓:全球变暖、自然灾害、海面上升、生态环境和海洋资源。1全球变暖的趋势科学家普遍认为,当今世界性工业的发展,大量能源的燃耗,向大气层排放超量的CO2、H2S及其他废气每年约50×108t,形成的“温室效应”而引起的全球性增温影响越来越明显。据统计资料表明,从1950~1985年,全球排放的CO2、H2S、氮氧化物、氯氟烃等物质增加…  相似文献   
33.
本文在大量统计事实基础上,对黑潮影响长江中下游夏季风的过程进行了分析。着重对其中三个问题作了较详细的讨沦.1.黑潮流轴中段春季海温与6月长江中下游夏季风的内在联系过程;2.与其相联的环流特点;3.海气相互作用的过程特点。得到了一些很有实际意义的结果与一个可能的天气物理过程。  相似文献   
34.
东中国海环流及其季节变化的数值模拟   总被引:1,自引:0,他引:1  
关于东中国海环流的研究,国内外学者已做了大量的工作。早期科学家们主要依赖于对温盐资料和少数测流资料的分析研究对渤、黄、东海的环流结构有了较系统和深入的认识。东中国海环流是由一个气旋式的“流涡”组成,东侧主要是北上的黑潮-对马暖流-黄海暖流及其延伸部分;西侧为南下的沿岸流系。黑潮对东中国海环流的影响是如此之大,以致于除了某些局部区域外,上述海域主要流系的冬、夏季分布形式比较相似而无本质上的差异(胡敦欣等,1993)。但本文所研究海域正处于世界上最显著的季风区,冬、夏季盛行风向基本相反,过渡季节(春、秋季)风向多变,风力减弱;海洋热盐结构季节变化明显(如冬季混合强,而夏季层化明显等),这些因素都使得东中国海环流存在着较明显的季节变化。 自20世纪80年代以来,东中国海环流的数值模拟工作逐步展开,并已成为研究环流结构及其形成机制的强有力工具。但由于数值模式本身以及计算方案的缺陷(如有些学者用固定的风场、温盐场对东中国海环流进行诊断模拟等)和观测资料的不足,数值模拟的结果难以得到验证,渤、黄、东海的环流研究中仍有大量的问题存在争议,以待澄清。例如,台湾暖流的来源、流径;对马暖流的来源;夏季黄海暖流的流径以及黄海冷水团环流等均有不同的论述。对黄、东海环流季节变化的数值模拟工作也较少,多用冬、夏典型月份的风场强迫积分至稳定态,给出冬、夏季环流,这种做法值得商榷。三维环流模式很难在1个月内达到稳定态,尤其是夏季层化明显、风力减弱的情况下,非常定风场的影响更应引起人们的重视。 本文采用比较符合实际的计算方案,用年循环风场和海面热通量场为外强迫,对渤、黄、东海的环流及其季节变化进行了模拟,并对一些争议问题进行了探讨。  相似文献   
35.
对1999年9~10月采自北太平洋亚热带环流区的19份表层海水样品的Ra同位素分析表明。研究海域表层水中的^226Ra、^228Ra放射性比度分别介于0.67~0.92、0.08~0.30Bq/m^3之间,平均值分别为0.74、0.11Bq/m^3.^226Ra/^228Ra)A.R.活度比的变化范围为0.11~0.44,平均值为0.19.上述数值明显低于近岸海域水体的相应值,表现为典型的开阔大洋水的特征.从空间分布的特征看,研究海域Ra同位素含量与^226Ra/^228Ra)A.R.值均呈均匀分布态势.将本研究结果与历史数据进行对比后发现,本研究获得的^226Ra、^228Ra放射性比度比20世纪60~80年代得到的数据来得低,可能与水体层化作用加强导致的Ra补充量的减少以及生物生产力升高导致的Ra迁出量的增加有关.北太平洋亚热带环流区表层水中Ra同位素的时间变化与文献报道的该海域叶绿素a、硅酸盐、磷酸盐含量与初级生产力的历史变化趋势相吻合.  相似文献   
36.
南海罗斯贝变形半径的地理及季节变化   总被引:3,自引:1,他引:3  
根据南海 1°× 1°网格的标准层季节平均温、盐度资料 ,在未引入Boussinesq近似条件下 ,采用改进的Thompson Haskell算法求解线性化斜压海洋水平大尺度波的垂直结构方程 (重力内波方程 ) ,从而得到了南海各网格点的第一斜压重力波相速度和相应的罗斯贝变形半径 ,并探讨其地理分布和季节变化特征 ,以期有助于南海环流和中尺度涡旋以及有关海洋侧边界效应的研究。  相似文献   
37.
Argo-认识和预测气候变化的全球海洋观测计划   总被引:1,自引:2,他引:1  
1 全球海洋观测网 (Argo)为了解全球气候的变化 ,海洋学界正在做一项雄心勃勃的事业 ,即设计并部署一个全球海洋观测系统 ,以便对海洋从季节到十年间的变化作前所未有的长期跟踪观测。这项计划的实施 ,将使人类对气候的认识和预测向前迈出一大步。全球海洋观测系统的现场支柱就是 Argo剖面浮标网 ,将为人类提供一个全球海洋次表层数据库。Argo剖面浮标观测网将由 3 0 0 0个自动仪器组成 (图 1 ) ,每个浮标每隔 1 0天发送一组取自 2 0 0 0 m到海面的温度和盐度剖面资料 (图 2、3 )。在全球大洋内每隔大约 3个经纬度布设一个浮标 ,其数据通…  相似文献   
38.
热带印度洋偶极子发生和演变机制的数值研究   总被引:5,自引:0,他引:5  
对中国科学院大气物理研究所(IAP)大气科学和地球流体力学数值模拟国家重点实验室(LASG)发展的第三代海洋模式(L30T63 OGCM)进行了改进。分析了该模式1959年1月—1998年12月的40a积分结果,以此研究热带印度洋偶极子发生、发展和消亡的物理机制。对数值模拟结果的分析表明,赤道印度洋表面异常东风引起的异常环流结构是偶极子发生、发展的主要动力学原因,其表面异常东风转换为异常西风所引起的异常环流结构调整是偶极子消亡的主要动力学原因;海气界面热通量异常的交换对热带印度洋海表温度距平偶极子模态的形成和演变起着重要的作用;垂直输送作用是热带印度洋次表层海温偶极子模态发生和演变的主要物理机制。  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号