首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   43篇
  国内免费   16篇
测绘学   4篇
大气科学   10篇
地球物理   51篇
地质学   19篇
海洋学   5篇
天文学   50篇
自然地理   2篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   9篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   6篇
  2001年   1篇
  2000年   12篇
  1999年   3篇
  1998年   2篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1980年   2篇
  1964年   1篇
  1937年   1篇
排序方式: 共有141条查询结果,搜索用时 62 毫秒
21.
着重评述了含激波吸积理论的发展历史和研究现状, 介绍了在伪牛顿势以及严格广义相对论框架下, 对等温和绝热两种不同的流体模型中可能发生的R- H 激波、等温激波等各种不同激波的解析和数值模拟研究, 包括激波发生的参数空间、不同流体参数( 比能量和比角动量) 下激波发生的位置、强度以及耗散的能量。这些研究结果表明, 在理想流体近似下, 黑洞吸积流中必定会产生激波。此外, 还介绍了含激波吸积理论在活动星系核方面的应用。对黑洞吸积理论简单讨论, 评述了含激波吸积理论与ADAF 吸积理论的关系, 着重评述了目前对于ADAF 中是否会发生激波这一存在很大争议的问题。  相似文献   
22.
利用全球磁流体模拟的结果,本文研究了行星际磁场B_y对弓激波位型的影响.结果显示:随着行星际磁场B_y绝对值的增大,弓激波的日下点距离、旋转对称张角、南北非对称性以及旋转非对称性均随之增加.其中,B_y对弓激波日下点距离的影响可达5 RE左右.东向B_y和西向B_y对弓激波位型影响具有对称性,东向B_y和西向B_y大小相同时弓激波日下点距离、旋转对称张角以及旋转非对称性参数均相同,而南北非对称性参数大小相同正负相反.行星际磁场B_y占主导时弓激波尾部横截面在南北方向上拉伸,并且拉伸程度随着B_y绝对值的增大而增大,弓激波尾部横截面的拉伸现象与磁声波马赫数密切相关.  相似文献   
23.
地球弓激波的旋转非对称性   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对太阳风-磁层-电离层系统的全球MHD模拟,研究地球弓激波相对日地连线的旋转非对称性.模拟限于太阳风速度沿日地连线、地球磁偶极矩和行星际磁场(IMF)与日地连线垂直的简单情况.模拟结果表明,即便对于IMF强度为零的情况,弓激波相对日地连线也不具备旋转对称性质:终端面(晨昏子午面)及其向阳侧的弓激波截线的东西宽度大于南北宽度(约9%~11%),终端面尾侧的弓激波截线东西宽度小于南北宽度(约8%).在存在IMF的情况下,弓激波的位形同时受到磁层顶的形状和快磁声波速度各向异性的影响.磁层顶向外扩张并沿IMF方向拉伸,且其扩张和拉伸程度随IMF由北转南而增强.在磁鞘中,垂直于磁场方向的快磁声波速度高于平行方向.因此,磁层顶拉伸方向与快磁声波速度最大方向垂直,它们对弓激波位置的效应恰好相反;弓激波的最终形状取决于何种效应占据主导地位.对于终端面尾侧,快磁声波速度的各向异性起主导作用,弓激波截线沿IMF垂直方向的宽度大于平行方向.对于终端面及其向阳侧,弓激波截线的形状与IMF取向有关:在准北向或晨昏向IMF情况下,弓激波截线沿IMF垂直方向的宽度仍大于平行方向;在准南向IMF情况下,弓激波截线沿IMF垂直方向的宽度小于平行方向的.鉴于弓激波形状同IMF取向之间的密切关系,我们提议以IMF为基准方向,提取弓激波截线的平行半宽度Rb∥和垂直半宽度Rb⊥作为尺度参数.这些尺度参数和通常引入的弓激波截线的东西半宽度yb和南北半宽度zb相比,更为合理地表征了弓激波的几何性质.模拟结果表明,在终端面上,yb/zb和Rb∥/Rb⊥在IMF各向同性取向下的统计平均值均低于1,与观测得到的结论一致.  相似文献   
24.
利用一维全粒子模拟得到的垂直无碰撞激波的位形,通过试验粒子方法研究了不同初始能量粒子的激波加速机制.将与激波相互作用的离子分成反射和直接穿过两类,发现只有被激波反射的离子可被激波明显加速,其中初始能量较小的反射离子通过激波冲浪机制加速,而初始能量较大的离子通过激波漂移加速机制加速.同时激波厚度还对离子被加速过程有重要影响.  相似文献   
25.
基于 2.5 维理想磁流体力学(Magnetohydrodynamic,MHD)方程组分析了行星际激波在日球层子午面内的传播过程及其相应的地磁效应.日球层电流片(Heliospheric Current Sheet,HCS)-日球层等离子体片(Heliospheric Plasma Sheet,HPS)对于行星际激波的传播具有一定的阻碍作用.当行星际激波相对于HCS 倾斜传播时,相对于扰动源位于HCS 异侧的激波强度较同侧的明显减弱.局地激波面的法线(或形状)对通过激波阵面的磁力线发生偏转的程度和方向起决定性作用.沿激波传播方向其为准平行激波,磁场偏转程度较小,而其两侧部分则为斜激波,磁场偏转程度较大.位于HCS-HPS 位置处的波前形成凹槽,磁力线偏转程度明显加强.行星际激波对磁场的偏转效应是其驱动地磁暴的重要机制,而且地磁效应的强度与地球相对于HCS 的角距离Δθp有明显关系.数值模拟结果表明:任何行星际激波,Δθp=0°处均无法形成较大强度的地磁效应;沿HCS 传播的行星际激波,地磁效应最强的区域位于HCS 两侧;相对于HCS 倾斜传播的行星际激波,地磁效应最强的区域位于HCS 异侧.  相似文献   
26.
本文利用低高度极轨卫星NOAA/POES的观测数据,对2003年Hallowe'en磁暴期间新质子带的形成和损失机制做了细致的研究和分析.结果表明新质子带的形成是诸多因素共同作用的结果.包括强太阳质子事件(Solar Proton Events,SPEs)、大的地磁暴和行星际激波.所有这些因素构成了新质子带形成的前提条件,尤其是行星际激波是形成新质子带不可缺少的因素.此外本文提出了磁暴主相对高能质子注入磁层稳定捕获区起到重要贡献.本文还运用绝热捕获判据分析了新质子带的损失机制,证明了由于磁暴期间环电流积累造成磁场大的扰动,破坏绝热不变量的守恒,导致新质子带粒子的损失.  相似文献   
27.
本文首次利用完全相同两颗卫星(CLUSTER C1和C3)的数据对地球激波前兆区太阳风的减速和偏转特性进行了统计研究.结果表明,在激波前兆坐标系中,太阳风减小的速度随观测点到激波的距离DBS增大而减小,随行星际磁场与激波法向夹角θBN增大也减小,在ULF波动区深度DWS小于6Re(Re为地球半径)的范围内最为显著;伴随着太阳风减速的另外一个现象——太阳风的偏转,也存在相似的规律.其最大减速和最大偏转角度分别为10 km/s和3°.太阳风减速和偏转,以及随之变化的太阳风动压,可能会引起地球磁层顶位置和形状发生改变,同时也为激波前兆区弥散(diffuse)离子的起源及加热提供了一种可能的机制.  相似文献   
28.
自适应网格技术在数值模式中的应用研究 I.一维问题   总被引:1,自引:0,他引:1  
利用变分原理的自适应网格技术被应用到三个有解析解的问题上,它能根据问题 的求解、在解的大梯度区自动加密网格,从而非常成功地算出了激波。通过分析发现自适应 网格技术在提高精度、减少运行时间方面显示了优良的性能。  相似文献   
29.
依据二维磁流体力学方程组 ,在子午面内分别数值模拟了与动量扰动和温度扰动相关的日冕物质抛射事件 (CME) ,并将二者结果进行对比 .结果认为 :二者在事件的空间结构 ,前沿激波的演化 ,暗腔的形成及作用 ,扰动后近日面新喷发物质的特征等方面是相似的 ;但在前沿激波的传播速度 ,强度和径向演化进程 ,暗腔的行为和磁感应强度以及后随等离子体团的密度等方面却不相同 .  相似文献   
30.
通过对比两次快速晕状日冕物质抛射(CME)事件,分析相应的日面和行星际的观测资料,发现源区距离冕洞较远的CME引起了极强的太阳高能粒子(Solar Energetic Particle,SEP)事件,而源区非常靠近冕洞的CME则没有引起大的SEP事件.该结果表明,冕洞可能对CME形成SEP事件有阻碍作用.继而分析1997~2003年所有爆发在冕洞边缘的快速晕状CME,发现源区离冕洞距离小于02Rs(太阳半径)的CME均没有引起大的SEP事件.从而进一步证实了冕洞可能对邻近CME形成大SEP事件有影响,它阻碍SEP事件的形成.最后讨论了冕洞阻碍CME形成大SEP事件的可能原因.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号