首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1041篇
  免费   269篇
  国内免费   388篇
测绘学   91篇
大气科学   829篇
地球物理   100篇
地质学   387篇
海洋学   114篇
天文学   4篇
综合类   66篇
自然地理   107篇
  2024年   12篇
  2023年   38篇
  2022年   60篇
  2021年   92篇
  2020年   65篇
  2019年   68篇
  2018年   39篇
  2017年   46篇
  2016年   43篇
  2015年   65篇
  2014年   105篇
  2013年   80篇
  2012年   80篇
  2011年   82篇
  2010年   100篇
  2009年   96篇
  2008年   74篇
  2007年   68篇
  2006年   67篇
  2005年   59篇
  2004年   73篇
  2003年   39篇
  2002年   32篇
  2001年   35篇
  2000年   21篇
  1999年   16篇
  1998年   28篇
  1997年   11篇
  1996年   15篇
  1995年   16篇
  1994年   11篇
  1993年   17篇
  1992年   13篇
  1991年   13篇
  1990年   9篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1982年   1篇
  1979年   1篇
  1960年   1篇
排序方式: 共有1698条查询结果,搜索用时 928 毫秒
171.
利用常规观测、加密自动气象站、三维闪电定位仪、天气雷达和地基微波辐射计资料等,对湖北冷季(2014年11月)发生的3次高架雷暴过程进行了分析。(1)3次过程发生在地面冷锋后部地面冷气团中,主要以短时强降水和频繁的雷电活动为主,是典型的冷季“高架雷暴”,对流区位于地面冷锋后部500 km左右。(2)地面到925 hPa的冷垫,迫使暖湿气流爬升,在925 hPa逆温层附近触发对流,冷垫之上西南暖湿气流越强,对流越旺盛,雷达径向速度剖面可以明显看到1 km之下的冷垫。(3)冷季高架雷暴雷电活动剧烈,CG(地闪)占总闪比例60%以上,而+CG则占CG的40%左右,闪电频次和降水有很好的时空对应关系,CG出现在较强降水中心附近及周围,IC和CG突增对降水均有一定的时间提前量。CG更靠近强回波中心,且和≥30 dBZ的回波位置对应较好,IC则分布在雷暴单体外侧回波强度≥15 dBZ的区域。0 ℃等温线以上的(最大)回波强度达到43 dBZ以上或者18 dBZ回波顶高超过7.5 km是湖北冷季高架雷暴是否发生雷电的重要预警因子。(4)地基微波辐射计温度、湿度廓线和探空曲线基本吻合,可以看到明显的冷垫、逆温层及西南急流。基于微波辐射计资料计算的不稳定指数变化特征对冷季高架雷暴的短临预报有重要的实际应用价值。当A指数、TT指数、K指数和T850-500出现快变抖动时,伴随抖动加剧可以判断将会有雷暴天气发生,当波动曲线开始下降并变得平稳,表示雷暴减弱消亡;θse 850在雷暴出现后跃增并在320 K附近抖动,雷暴结束后下落到290 K的平稳状态;Td850在雷暴活跃阶段近乎为0 ℃;T850-500在雷暴发生前是一个缓慢下降的过程,雷暴结束后大气趋于稳定。   相似文献   
172.
利用2006-2017年黑龙江省闪电定位资料和日平均地面相对湿度资料,采用数理统计、Pearson相关分析、GIS空间分析技术,研究了闪电密度和强度对地面相对湿度(RH)的响应关系。结果表明:地面RH过小或过大都不利于闪电活动产生;当RH < 25%时,几乎无闪电发生,当RH < 77%时,RH增加有利于闪电活动发生,当RH>79%时,随着RH增加,闪电活动减少;当RH < 77%时,闪电密度与之呈正相关,闪电强度与之呈负相关;当RH>79%时,闪电密度与之呈负相关,闪电强度与之呈正相关;地面RH的临界值域约为77%-79%;70%≤ RH ≤ 90%区间为闪电易发湿度区间,在闪电密度与湿度相关度高的区域,闪电更趋于集中发生在闪电易发湿度区间。  相似文献   
173.
青藏高原东北部地区闪电特征初步分析   总被引:3,自引:0,他引:3  
利用VHF辐射源三维定位系统及快、慢天线资料,对青海大通地区5次雷暴过程中云闪、负地闪、正地闪的起始高度、持续时间、辐射源数目及正、负地闪云内放电过程的持续时间和回击次数进行了统计分析.研究表明,该地区闪电持续时间较短,平均<0.5 s;正、负地闪首次回击发生前均有较长时问的云内放电过程,正地闪的云内放电过程持续时间略长于负地闪;负地闪的回击次数较少,平均为2.5次,其中40%的负地闪只有1次回击,而正地闪回击次数均为1次;云闪的起始高度最高,负地闪的起始高度低于云闪,正地闪的起始高度最低;云闪产生的辐射源数目最多,负地闪少于云闪,正地闪产生的辐射源数目最少.  相似文献   
174.
利用西天山地区14个气象站1960-2010年雷暴资料和新疆雷电监测网2008年观测资料,分析了西天山地区雷暴和闪电变化特征。结果表明:西天山地区年平均雷暴日数分布呈东西多,南北少的形势。该区域年平均雷暴日数在17.3~85.5 d之间,并以2.7 d/10 a的速率减少。西天山地区雷暴日数的年变化呈单峰型,并在6-7月达到最大值。整个区域以正闪为主,正闪占总闪的比例达66%。该区域闪电电流强度在-130~+63 kA之间,负闪强度大于正闪强度。  相似文献   
175.
颜志  颜旭 《广东气象》2013,35(3):45-49,53
设计了4个规格一致、材料不同的屏蔽体,对自然闪电条件下4个不同结构屏蔽体内部的磁场变化特征进行了观测研究。试验期间共采集了5次自然闪电共14次回击的屏蔽体内部磁场波形,分析发现,砖混结构内部磁场与真实雷电流波形10/350特征基本一致,但少部分波形有明显的波动特性,这可能与特殊的闪电回击事件、试验现场环境和设备等多方面因素有关;钢混结构和格栅结构内部磁场波形特征相似,在回击阶段出现幅值较高的初始峰值,持续时间很短,回落后缓慢上升,到次峰及恢复零值持续时间较长,两者的峰值也基本相同;全金属结构内部磁场波形与以上3种结构屏蔽体波形特征有明显区别,在回击产生时有明显的初始峰值,很快回落,并出现反极性磁场变化的特征,恢复零值后磁场基本消失。  相似文献   
176.
基于干涉仪原理的甚高频雷电单站预警   总被引:1,自引:0,他引:1  
针对目前闪电单站探测与预警装置的局限性,设计了一套基于闪电宽带干涉仪原理的甚高频单站雷电预警装置.该装置通过测量雷电(包括云闪与地闪)起始时刻的辐射信号到达竖直天线阵列的相位差,计算得到该信号的仰角,根据仰角估算雷电的距离,进而根据雷电的距离和活动特征进行雷电报警.单站测距误差分析结果表明,单站系统对半径50 km范围内闪电测距误差在25%以内,半径100 km范围内的闪电测距误差在30%以内.雷电单站预警装置对一次雷暴过程进行了观测,观测结果表明,该装置能有效探测半径100 km范围内的闪电活动状况,探测到的闪电频次分布、闪电距离与多站闪电定位结果保持较好一致性,证明其能有效探测周围闪电活动状况,起到提前预警雷暴的作用.  相似文献   
177.
本文以2019年一次尾随层状(TS)型线状对流为研究个例,利用FY-4A闪电成像仪(LMI)资料、雷达组合反射率因子资料、地基闪电定位资料(ADTD)、FY-4A云顶亮温资料(TBB)和其他常规观测资料,对比分析了LMI闪电数据在TS型线状对流3个不同演变阶段的数据可靠性及观测特征。结果表明:TS型线状对流不同演变阶段的LMI闪电观测具有一定的时空连续性,LMI闪电分布与ADTD闪电分布的区域总体较为一致,但数量多于ADTD闪电数量,并多位于TBB≤240K的对流云中,LMI闪电数据可信度较高;对流发展阶段,LMI闪电观测大部位于TS型线状对流移动方向的前方,位置超前于前导对流线,对未来0-1小时内对流发展具有提前指示意义;对流成熟阶段,LMI闪电观测与前导对流线位置较为一致,对线状对流发展具有监测意义;对流减弱阶段,LMI闪电一部分位于减弱的前导对流线中,另一部分位于其后侧尾随的积层混合云中。最后,给出了本次TS型线状对流不同演变阶段LMI闪电观测特征示意图,为LMI闪电产品在对流天气监测预警中的应用提供一定参考。  相似文献   
178.
蓝镜头     
红海位于非洲东北部与阿拉伯半岛之间,形状狭长。红海北端分叉成两个小海湾,西为苏伊士湾,东为亚喀巴湾。南部通过曼德海峡与亚丁湾、印度洋相连。红海连接地中海和阿拉伯海,是一条重要的石油运输通道。图为静静的亚喀巴湾。海洋保护区中,也只有不到1/3被有效地管理起来,绝大部分仍缺乏有效的管理。  相似文献   
179.
There were three hailstorms in Shandong Province,caused by a same northeast cold eddy situation on 1 June 2002.Cloud-to-ground (CG) flashes occurring in the weather event were observed by Shandong Lightning Detection Network (SLDN),which consists of 10 sensors covering all over Shandong Province.The temporal and spatial distributions of CG lightning are investigated for the three hailstorms by using the data from SLDN,Doppler radar and satellite.The results show that different thunderstorms present different lightning features even if under the same synoptic situation.The percentage of positive CG lightning is very high during the period of hail falling.CG flashes mainly occurred in the region with a cloud top brightness temperature lower than -50°C.Negative CG flashes usually clustered in the lower temperature region and tended to occur in the region with maximum temperature gradient,while the positive ones usually spread discretely.Negative CG flashes usually occurred in intense echo regions with reflectivity greater than 50 dBz,while the positive CG flashes often occurred in weak and stable echo regions (10-30 dBz) or cloud anvils,although they can be observed in strong convective regions sometimes.Almost all hail falling took place in the stage with active positive flashes,and the peak positive flash rate is a little prior to the hail events.The thunderstorm could lead to disastrous weather when positive CG lightning activities occur in cluster.Severe thunderstorms sometimes present a low flash rate at its vigorous stage,which is probably caused by the"mechanism of chargeregion lift"through investigating the reflectivity evolution.Combined with the total lightning (intracloud and CG) data obtained by LIS onboard TRMM,the phenomenon of high ratio of intracloud flash to CG flash in severe hailstorm has been discussed.The competition of the same charge sources between different lightning types can also be helpful for explaining the cause of low CG lightning activities in severe storms.  相似文献   
180.
海洋似乎成为眼下困扰中国外交的最大难题。南海方向,菲律宾、越南等部分东南亚国家以挑衅性的姿态抢夺中国海洋资源:东海方向,中日围绕钓鱼岛归属和油气田开发的争夺依然激烈:黄海方向,中国渔民与韩国海警在渔业资源的争夺甚至付出了生命的代价。据了解,近期中国有关部门交涉的主权纠纷点中十个有八个集中在海洋方向。北京大学国际关系学院副院长王逸舟教授提出,中国外交在海洋方向的麻烦日益增多是新一轮蓝色圈地运动的结  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号