首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   5篇
  国内免费   1篇
地球物理   34篇
地质学   101篇
海洋学   7篇
自然地理   18篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   11篇
  2015年   2篇
  2014年   9篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   9篇
  2008年   11篇
  2007年   9篇
  2006年   11篇
  2005年   12篇
  2004年   9篇
  2003年   7篇
  2002年   11篇
  2001年   6篇
  2000年   10篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1978年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
51.
Sandy turbidites commonly show evidence for significant dynamic coupling with their substrate. The resulting deformation can be described using structural kinematic methods, linked to palaeoflow indicators, to better understand the links between flow and entrainment processes. A field example from the syn‐orogenic Gorgoglione Flysch, a succession of upper Miocene turbidites deposited into a deforming array of thrust‐top basins in the southern Apennine thrust belt, Italy, is described. The succession contains metre‐scale packages of alternating sandy turbidites and shales but is notable for containing > 100 m thick, massive sandbodies. These are structureless apart from sporadic horizons of aligned mud clasts. Commonly, the substrate beneath the massive sandbodies is deformed, with minor folds and thrusts verging in the direction of palaeoflow determined from tool marks and flutes at the base of these sandbodies. Structural studies from the base of a selected massive sandbody have identified that the substrate mud has been injected upwards, with flames sheared over in the direction of palaeoflow. Thus the substrate has deformed and become entrained during emplacement of the massive sandy body. At some locations, the substrate can be traced into the overlying deposit, with substrate clay beds becoming boudinaged and entrained into the sandbody. Analysis of the orientation of the mud clasts indicates that this bed disruption and incorporation into the sandy massive‐bed turbidite was an organized, viscous process. These features indicate that significant shear stress was partitioned out of the flow and onto the substrate. The incorporation and disruption of substrate into the sandbody suggest that post‐disruption strains increase upwards – implying that displacement gradients increased into the flow. These behaviours, showing variations in strain partitioning between the flow and its substrate, are explored in terms of evolving flow dynamics and substrate rheology.  相似文献   
52.
We model the rainfall-induced initiation of shallow landslides over a broad region using a deterministic approach, the Transient Rainfall Infiltration and Grid-based Slope-stability (TRIGRS) model that couples an infinite-slope stability analysis with a one-dimensional analytical solution for transient pore pressure response to rainfall infiltration. This model permits the evaluation of regional shallow landslide susceptibility in a Geographic Information System framework, and we use it to analyze susceptibility to shallow landslides in an area in the eastern Umbria Region of central Italy. As shown on a landslide inventory map produced by the Italian National Research Council, the area has been affected in the past by shallow landslides, many of which have transformed into debris flows. Input data for the TRIGRS model include time-varying rainfall, topographic slope, colluvial thickness, initial water table depth, and material strength and hydraulic properties. Because of a paucity of input data, we focus on parametric analyses to calibrate and test the model and show the effect of variation in material properties and initial water table conditions on the distribution of simulated instability in the study area in response to realistic rainfall. Comparing the results with the shallow landslide inventory map, we find more than 80% agreement between predicted shallow landslide susceptibility and the inventory, despite the paucity of input data.  相似文献   
53.
Quaternary tectonics and paleoseismologicalinvestigations have defined a reliable framework ofactive faults in the southern Umbria and AbruzziApennines. Two sets of NW–SE to NNW–SSE trending, 16to 33 km-long, normal and normal-oblique faults orfault systems have caused the displacement of LatePleistocene–Holocene deposits and landforms within theinvestigated sector. Available data on verticaloffsets indicate that both Late Pleistocene–Holoceneand Quaternary (since the later part of the EarlyPleistocene; 0.9–1 Ma) slip rates range between 0.4and 1.2 mm/yr (range 0.6–0.8 mm/yr preferred).Paleoseismological investigations show that recurrenceintervals for surface faulting events are alwaysgreater than 1,000 years and are usually greater than2,000 years. Both paleoseismological data andlong-term seismicity show that activation of theinvestigated faults may result in earthquakes ofM = 6.5–7.0. The extension rate across the two sets ofprimary faults ranges between 0.7 and 1.6 mm/yr.Horizontal seismic strain has been calculated to be0.5–0.6 mm/yr, based on the summation of the seismicmoment of M > 5.3 earthquakes which have affected theinvestigated area since 1200 AD. This value may belower than that inferred through geological data,probably because the seismological record reliable forthe addition of the seismic moments covers a too shorttime window (about 800 years) to be consideredrepresentative of the tectonic activity in theinvestigated area. This conclusion iscorroborated by the large recurrence intervalper fault (>1,000–2,000 years) inferred frompaleoseismological analysis. A comparison of theactive-fault framework and historical-seismicitydistribution indicates that the entire eastern set ofactive faults has likely not been activated since 1000AD, thus indicating that the elapsed time since thelast activation for several faults of the investigatedarea may be greater than 1,000 years. In terms ofhazard, the highest probability of activation isrelated to the eastern set faults, due to theobservation that the elapsed time for some of thesefaults may be similar to the recurrence interval. Asan example, paleoseismological andarchaeoseismological data indicate that the elapsedtime for the Mt. Vettore and Mt. Morrone Faults may begreater than 1,650 and 1,850 years, respectively.These data may have significant implications for riskrelated to a number of towns in central Italy and tothe city of Rome. As for the latter, in fact,monumental heritage has suffered significant damagedue to earthquakes of M > 6.5 which originated in theinvestigated Apennine sector.  相似文献   
54.
We report on new paleomagnetic results obtained from 27 sites sampled in the Plio–Pleistocene sequences at the external front of the central–northern Apennines. Previous analyses of Miocene (Messinian) sediments indicated that the present shape of the northern Apenninic arc is due to the oroclinal bending of an originally straight belt oriented around N320° and that vertical axis rotations accompanied the migration of the thrust fronts toward the Adriatic foreland [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153–3166]. We tried to provide new paleomagnetic constraints for the timing and rates of the oroclinal bending process during the Pliocene and the Pleistocene. The results suggest that CCW rotations observed in the northern part of the studied area are possibly younger than 3 Ma. No regional rotation is recorded in the Pliocene and Pleistocene sediments from the southern part of the study area, analogously to the Messinian sediments of the ‘Acquasanta’ domain of Speranza et al. [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153–3166]. A local significant CCW rotation (23°±10°) is identified in the Early Pleistocene sediments that crop out along the Adriatic coast between Ascoli and Pescara, indicating differential motion of the thrust sheets. This rotation must be younger than 1.43 Ma.  相似文献   
55.
A three-component digital seismic network has been installed along central Apennines since the end of 1991. Two seismic sequences having main shocks of magnitudes 3.9 and 3.7 were recorded in August 1992 and June 1994, respectively. A detailed analysis of these sequences, including multiplet relocation, fault-plane solutions and source parameter estimation, is performed in the present paper. A correlation analysis allowed us to recognize a number of correlated events in the two sequences which were used for relative locations using a master event technique. This analysis allowed to obtain a better alignment of epicentral data along two almost orthogonal directions, following an Apenninic and an anti-Apenninic trend. For the two sequences, fault-plane solutions were evaluated by using a first arrival technique, resulting in mechanisms with predominant normal faulting for the 1992 and 1994 swarms. S-wave polarization analysis allowed to check the stability of the previous solutions and to reduce their range of uncertainty. The same technique was also applied to derive the composite fault-plane solutions from the aftershocks, resulting in solutions which are in good agreement with those derived from the main shocks of both sequences. Source parameters were then derived from the three-component records of 28 well-recorded events with seismic moment in the range 8.5 × 1010–1.0 × 1014 Nm. Stress drops ranged in the interval 0.3–52.3 bar and source radii were of the order of 100 m. Their scaling relations are in good agreement with other results derived from the analysis of other Italian earthquakes that occurred in regions of predominantly normal faulting tectonics (Apennines and Calabrian arc).  相似文献   
56.
57.
The boundary area between the Apenninic fold‐and‐thrust belt and the crystalline Calabrian Arc, located around Sangineto in northern Calabria, has been investigated. New geological mapping in the Sant'Agata area has been performed on the Triassic successions traditionally attributed to the metasedimentary San Donato Unit. This, coupled with a reappraisal of the stratigraphy and tectonics of coeval successions present more to the south in the Cetraro Unit, results in a new reconstruction of the Triassic evolution of all the metasedimentary successions found in the region. Four informal stratigraphic units have been distinguished in the S. Agata area. The lowest one (Unit A) consists of well‐bedded metalimestones and bioturbated marly limestones that correlate with Ladinian–Carnian carbonates in nearby areas. A second unit (Unit B), never recognized before, contains a complex alternation of dolomites, phyllites and some meta‐arenites containing several beds of Cavernoso facies, attributed to the Carnian. They grade upward to platform and platform‐margin dolomites of Norian–Rhaetian age (Unit C) that in turn are replaced upward and laterally by a fourth unit (Unit D) consisting of well‐bedded, dark dolomites and metalimestones with marly interlayers locally found as resedimented large blocks in slope conglomerates. Unit D correlates with Rhaetian–Liassic beds in nearby areas. Several pieces of evidence of post‐metamorphic contractional tectonics, with 140°N and 30°N trends, are found together with evidence of SW‐directed extension. The siliciclastic Carnian beds of Unit B are correlated with the phyllites of Cetraro, formerly believed to be Middle Triassic; moreover, it is suggested that in the Cetraro area Unit C is almost totally replaced by Unit D. This demonstrates that the former distinction between the two tectonic units in the whole area has to be discarded. We have made a general palaeoenvironmental reconstruction which progresses laterally, during Ladinian–Carnian times, from (i) a coastal, mixed siliciclastic–carbonate–evaporitic area at Cetraro to (ii) a transitional carbonate shelf where siliciclastic input was only episodic, and finally to (iii) a bioconstructed margin which was later replaced by a steepened margin created by tectonic instability. Starting from the Norian, subsidence shifted toward the former coastal area where an intraplatform, restricted basin developed. The proposed stratigraphy corresponds closely to the Alpujarride units of the Betic Cordillera, Spain. Moreover, it is shown that strong affinities also exist, in terms of the structural framework, with the metamorphic units of Tuscany and Liguria. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
58.
Pumpellyite from four-phase assemblages (pumpellyite + epidote + prehnite + chlorite; pumpellyite + epidote + actinolite + chlorite; pumpellyite + epidote + Na-amphibole + chlorite, together with common excess phases), considered to be low variance in a CaO-(MgO + FeO)-Al2O3-Fe2O3 (+Na2O + SiO2+ H2O) system, have been examined in areas which underwent metamorphism in the prehnite-pumpellyite, pumpellyite-actinolite and low-temperature blueschist facies respectively. The analysed mineral assemblages are compared for nearly constant (basaltic) chemical composition at varying metamorphic grade and for varying chemical composition (basic, intermediate, acidic) at constant metamorphic conditions (low-temperature blueschist facies). In the studied mineral assemblages, coexisting phases approached near chemical equilibrium. At constant (basaltic) bulk rock composition the MgO content of pumpellyite increases, and the XFe3+ of both pumpellyite and epidote decreases with increasing metamorphic grade, the Fe3+ being preferentially concentrated in epidote. Both pumpellyite and epidote compositions vary with the bulk rock composition at isofacial conditions; pumpellyite becomes progressively enriched in Fe and depleted in Mg from basic to intermediate and acidic bulk rock compositions. The compositional comparison of pumpellyites from high-variance (1–3 phases) assemblages in various bulk rock compositions (basic, intermediate, acidic rocks, greywackes, gabbros) shows that the compositional fields of both pumpellyite and epidote are wide and variable, broadly overlapping the compositional effects observed at varying metamorphic grade in low-variance assemblages. The intrinsic stability of both Fe- and Al-rich pumpellyites extends across the complete range of the considered metamorphic conditions. Element partitioning between coexisting phases is the main control on the mineral composition at different P-T conditions.  相似文献   
59.
This paper examines the morphotectonic and structural–geological characteristics of the Quaternary Martana Fault in the Umbria–Marche Apennines fold‐and‐thrust belt. This structure is more than 30 km long and comprises two segments: a N–NNW‐trending longer segment and a 100°N‐trending segment. After developing as a normal fault in Early Pleistocene times, the N–NNW Martana Fault segment experienced a phase of dextral faulting extending from the Early to Middle Pleistocene boundary until around 0.39 Ma, the absolute age of volcanics erupted in correspondence to releasing bends. The establishment of a stress field with a NE–ENE‐trending σ3 axis and NW–NNW σ1 axis in Late Pleistocene to Holocene times resulted in a strong component of sinistral faulting along N–NNW‐trending fault segments and almost pure normal faulting on newly formed NW–SE faults. Fresh fault scarps, the interaction of faulting with drainage systems and displacement of alluvial fan apexes provide evidence of the ongoing activity of this fault. The active left‐lateral kinematic along N–NNW‐trending fault segments is also revealed by the 1.8 m horizontal offset of the E–W‐trending Decumanus road, at the Roman town of Carsulae. We interpret the present‐day kinematics of the Martana Fault as consistent with a model connecting surface structures to the inferred north‐northwest trending lithospheric shear zone marking the western boundary of the Adria Plate. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
60.
We investigate background seismic activity of the Abruzzo region, a 5000 km2 area located within the Central Apennines of Italy, where in the past 600 years at least 5 large earthquakes (I = XI–X) have occurred.Between April 2003 and September 2004, a dense temporary seismic network composed of 30 digital three-component seismic stations recorded 850 earthquakes with 0.9 < ML < 3.7. We present earthquake locations and focal mechanisms obtained by standard procedures and an optimized velocity model computed with a search technique based on genetic algorithms.The seismicity occurs at a low and constant rate of  2.6 e− 04 events/daykm2 and is sparsely distributed within the first 15 km of the crust. Minor increases in the seismicity rate are related to the occurrence of small and localised seismic sequences that occur at the tip of major active normal faults along secondary structures.We observe that during the 16 months of study period, the Fucino fault system responsible for the 1915 Fucino earthquake (MS = 7.0), and the major normal faults of the area, did not produce significant seismic activity.Fault plane solutions evaluated using P-wave polarity data show the predominance of normal faulting mechanisms ( 55%) with NE-trending direction of extension coherent with the regional stress field active in this sector of the Apennines. Around 27% of the focal solutions have pure strike–slip mechanisms and the rest shows transtensional faulting mechanisms that mainly characterise the kinematics of the secondary structures activated by the small sequences.We hypothesize that the largest known NW-trending normal faults are presently locked and we propose that in the case of activation, the secondary structures located at their tips may act as transfer faults accommodating a minor part of the extensional deformation with strike–slip motion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号