首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   666篇
  免费   89篇
  国内免费   102篇
测绘学   4篇
大气科学   6篇
地球物理   430篇
地质学   318篇
海洋学   38篇
天文学   2篇
综合类   20篇
自然地理   39篇
  2023年   2篇
  2022年   16篇
  2021年   14篇
  2020年   21篇
  2019年   12篇
  2018年   13篇
  2017年   17篇
  2016年   11篇
  2015年   12篇
  2014年   30篇
  2013年   24篇
  2012年   15篇
  2011年   28篇
  2010年   10篇
  2009年   62篇
  2008年   95篇
  2007年   51篇
  2006年   56篇
  2005年   57篇
  2004年   40篇
  2003年   42篇
  2002年   18篇
  2001年   15篇
  2000年   48篇
  1999年   38篇
  1998年   32篇
  1997年   17篇
  1996年   19篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1954年   1篇
排序方式: 共有857条查询结果,搜索用时 15 毫秒
121.
The edifice of Stromboli volcano gravitationally collapsed several times during its volcanic history (>100 ka–present). The largest Holocene event occurred during the final stage of the Neostromboli activity (∼13–5 ka), and was accompanied by the emplacement of phreatomagmatic and lahar deposits, known as the Secche di Lazzaro succession. A stratigraphic and paleomagnetic study of the Secche di Lazzaro deposits allows the interpretation of the emplacement and the eruptive processes. We identify three main units within the succession that correspond to changing eruption conditions. The lower unit (UA) consists of accretionary lapilli-rich, thinly bedded, parallel- to cross-stratified ash deposits, interpreted to indicate the early stages of the eruption and emplacement of dilute pyroclastic density currents. Upward, the second unit (UB) of the deposit is more massive and the beds thicker, indicating an increase in the sedimentation rate from pyroclastic density currents. The upper unit (UC) caps the succession with thick, immediately post-eruptive lahars, which reworked ash deposited on the volcano’s slope. Flow directions obtained by Anisotropy of Magnetic Susceptibility (AMS) analysis of the basal bed of UA at the type locality suggest a provenance of pyroclastic currents from the sea. This is interpreted to be related to the initial base-surges associated with water–magma interaction that occurred immediately after the lateral collapse, which wrapped around the shoulder of the sector collapse scar. Upward in the stratigraphy (upper beds of UA and UB) paleoflow directions change and show a provenance from the summit vent, probably related to the multiple collapses of a vertical, pulsatory eruptive column.  相似文献   
122.
The Katla volcano in Iceland is characterized by subglacial explosive eruptions of Fe–Ti basalt composition. Although the nature and products of historical Katla eruptions (i.e. over the last 1,100 years) at the volcano is well-documented, the long term evolution of Katla’s volcanic activity and magma production is less well known. A study of the tephra stratigraphy from a composite soil section to the east of the volcano has been undertaken with emphasis on the prehistoric deposits. The section records ∼8,400 years of explosive activity at Katla volcano and includes 208 tephra layers of which 126 samples were analysed for major-element composition. The age of individual Katla layers was calculated using soil accumulation rates (SAR) derived from soil thicknesses between 14C-dated marker tephra layers. Temporal variations in major-element compositions of the basaltic tephra divide the ∼8,400-year record into eight intervals with durations of 510–1,750 years. Concentrations of incompatible elements (e.g. K2O) in individual intervals reveal changes that are characterized as constant, irregular, and increasing. These variations in incompatible elements correlate with changes in other major-element concentrations and suggest that the magmatic evolution of the basalts beneath Katla is primarily controlled by fractional crystallisation. In addition, binary mixing between a basaltic component and a silicic melt is inferred for several tephra layers of intermediate composition. Small to moderate eruptions of silicic tephra (SILK) occur throughout the Holocene. However, these events do not appear to exhibit strong influence on the magmatic evolution of the basalts. Nevertheless, peaks in the frequency of basaltic and silicic eruptions are contemporaneous. The observed pattern of change in tephra composition within individual time intervals suggests different conditions in the plumbing system beneath Katla volcano. At present, the cause of change of the magma plumbing system is not clear, but might be related to eruptions of eight known Holocene lavas around the volcano. Two cycles are observed throughout the Holocene, each involving three stages of plumbing system evolution. A cycle begins with an interval characterized by simple plumbing system, as indicated by uniform major element compositions. This is followed by an interval of sill and dyke system, as depicted by irregular temporal variations in major element compositions. This stage eventually leads to a formation of a magma chamber, represented by an interval with increasing concentrations of incompatible elements with time. The eruption frequency within the cycle increases from the stage of a simple plumbing system to the sill and dyke complex stage and then drops again during magma chamber stage. In accordance with this model, Katla volcano is at present in the first interval (i.e. simple plumbing system) of the third cycle because the activity in historical time has been characterized by uniform magma composition and relatively low eruption frequency.  相似文献   
123.
Popocatépetl Volcano is located in the central Mexican Volcanic Belt, within a densely populated region inhabited by over 20 million people. The eruptive history of this volcano indicates that it is capable of producing a wide range of eruptions, including Plinian events. After nearly 70 years of quiescence, Popocatépetl reawakened in December 21, 1994. The eruptive activity has continued up until the date of this submission and has been characterized by a succession of lava dome growth-and-destruction episodes, similar to events that have apparently been typical for Popocatépetl since the fourteenth century. In this regime, the episodes of effusive and moderately explosive activity alternate with long periods of almost total quiescence. In this paper we analyze five years of volcano-tectonic seismicity preceding the initial eruption of the current episode. The evolution of the V-T seismicity shows four distinct stages, which we interpret in terms of the internal processes which precede an eruption after a long period of quiescence. The thermal effects of a magma intrusion at depth, the fracturing related to the slow development of magma-related fluid pathways, the concentration of stress causing a protracted acceleration of this process, and a final relaxation or redistribution of the stress shortly before the initial eruption are reflected in the rates of V-T seismic energy release. A hindsight analysis of this activity shows that the acceleration of the seismicity in the third stage asymptotically forecast the time of the eruption. The total seismic energy release needed to produce an eruption after a long period of quiescence is related to the volume of rock that must be fractured so imposing a characteristic threshold limit for polygenetic volcanoes, limit that was reached by Popocatépetl before the eruption.  相似文献   
124.
Four groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichón volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3 km of direct distance from the crater. Three groups of near-neutral (pH ≈ 6) springs at SW–S slopes have the total thermal water outflow rate higher than 300 l/s and are similar in composition. The fourth and farthest group on the western slope discharges acidic (pH ≈ 2) saline (10 g/kg of Cl) water with a much lower outflow rate (< 10 l/s).  相似文献   
125.
El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4 = 0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake, meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009 ± 1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.  相似文献   
126.
Kaguyak Caldera lies in a remote corner of Katmai National Park, 375 km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ± 0.2 ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61–67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80 km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5–64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53–74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60 ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200 years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62–65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.  相似文献   
127.
Papandayan is a stratovolcano situated in West Java, Indonesia. Since the last magmatic eruption in 1772, only few hydrothermal explosions have occurred. An explosive eruption occurred in November 2002 and ejected ash and altered rocks. The altered rocks show that an advanced argillic alteration took place in the hydrothermal system by interaction between acid fluids and rocks. Four zones of alteration have been defined and are limited in extension and shape along faults or across permeable structures at different levels beneath the active crater of the volcano.  相似文献   
128.
本文应用美国国家气象局提供的1958—1997年全球大气精确的轨道参数和涠洲岛地区风速和风向等数据资料,模拟了火山喷发时空降碎屑的分布情况。结果表明,涠洲岛地区火山喷发形成的空降碎屑分布与喷发时的风速与风向有关,NNW方向的风可使空降碎屑影响到海南省北部地区,SSW方向风可使空降碎屑影响广西东南部和广东西南部的广大地区,1月和7月份喷发时主要影响涠洲岛及周边海域。  相似文献   
129.
The Fontana Lapilli deposit was erupted in the late Pleistocene from a vent, or multiple vents, located near Masaya volcano (Nicaragua) and is the product of one of the largest basaltic Plinian eruptions studied so far. This eruption evolved from an initial sequence of fluctuating fountain-like events and moderately explosive pulses to a sustained Plinian episode depositing fall beds of highly vesicular basaltic-andesite scoria (SiO2 > 53 wt%). Samples show unimodal grain size distribution and a moderate sorting that are uniform in time. The juvenile component predominates (> 96 wt%) and consists of vesicular clasts with both sub-angular and fluidal, elongated shapes. We obtain a maximum plume height of 32 km and an associated mass eruption rate of 1.4 × 108 kg s−1 for the Plinian phase. Estimates of erupted volume are strongly sensitive to the technique used for the calculation and to the distribution of field data. Our best estimate for the erupted volume of the majority of the climactic Plinian phase is between 2.9 and 3.8 km3 and was obtained by applying a power-law fitting technique with different integration limits. The estimated eruption duration varies between 4 and 6 h. Marine-core data confirm that the tephra thinning is better fitted by a power-law than by an exponential trend.  相似文献   
130.
The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver func-tion modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s. At EDO station located 50 km north of Tianchi caldera,no obvious crustal low velocity layer is detected. In the volcanic re-gion,the thickness of crustal ...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号