首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4038篇
  免费   873篇
  国内免费   1487篇
测绘学   51篇
大气科学   162篇
地球物理   1053篇
地质学   4084篇
海洋学   274篇
天文学   22篇
综合类   134篇
自然地理   618篇
  2024年   26篇
  2023年   60篇
  2022年   117篇
  2021年   141篇
  2020年   210篇
  2019年   235篇
  2018年   202篇
  2017年   251篇
  2016年   215篇
  2015年   227篇
  2014年   330篇
  2013年   361篇
  2012年   321篇
  2011年   288篇
  2010年   221篇
  2009年   290篇
  2008年   290篇
  2007年   285篇
  2006年   328篇
  2005年   228篇
  2004年   205篇
  2003年   193篇
  2002年   185篇
  2001年   122篇
  2000年   150篇
  1999年   130篇
  1998年   120篇
  1997年   98篇
  1996年   111篇
  1995年   104篇
  1994年   76篇
  1993年   76篇
  1992年   44篇
  1991年   40篇
  1990年   35篇
  1989年   26篇
  1988年   16篇
  1987年   12篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   7篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1954年   5篇
排序方式: 共有6398条查询结果,搜索用时 31 毫秒
191.
Studies of supercontinental cycle are mainly concentrated on the assembly, breakup and dispersal of supercontinents, and studies of continental crustal growth largely on the growth and loss (recycling) of the crust. These two problems have long been studied separately from each other. The Paleozoic–Mesozoic granites in the Central Asian Orogenic Belt have commonly positive Nd values, implying large-scale continental crustal growth in the Phanerozoic. They coincided temporally and spatially with the Phanerozoic Pangea supercontinental cycle, and overlapped in space with the P-wave high-V anomalies and calculated positions of subducted slabs for the last 180 Ma, all this suggests that the Phanerozoic Laurasia supercontinental assembly was accompanied by large-scale continental crustal growth in central Asia. Based on these observations, this paper proposes that there may be close and original correlations between a supercontinental cycle, continental crustal growth and catastrophic slab avalanches in the mantle. In this model we suggest that rapid continental crustal growth occurred during supercontinent assembly, whereas during supercontinental breakup and dispersal new additions of the crust were balanced by losses, resulting in a steady state system. Supercontinental cycle and continental crustal growth are both governed by changing patterns of mantle convection.  相似文献   
192.
The Proterozoic Eastern Ghats Mobile Belt along the east coast of India shares a thrusted lower contact with the surrounding cratons. The thrust, known as the Terrane Boundary shear zone, is associated with two large lateral ramps resulting in a curved outline on the northwestern corner of the mobile belt. The Eastern Ghats Mobile Belt is divided into two lithotectonic units, the Lathore Group and the Turekela Group, based on their lithological assemblages and deformational history. On the basis of published data from a Deep Seismic Sounding (DSS) profile of the Eastern Ghats crust, the Terrane Boundary Shear Zone is considered to be listric in nature and acts as the sole thrust between craton and mobile belt. The Lathore and Turekela Groups are nappes. With this structural configuration the NW part is described as a fold thrust belt. However, the thrusting postdates folding and granulite metamorphism that occurred in the Eastern Ghats, as in the Caledonide type of fold thrust belt of NW Scotland. The Terrane Boundary Shear Zone is interpreted to be contiguous with the Rayner-Napier boundary of the Enderby Land in a Gondwana assembly.  相似文献   
193.
The Kunavaram alkaline complex is a NE-SW trending elongate body located along a major lineament, the Sileru Shear Zone (SSZ) that is regarded as a Proterozoic suture related to Indo-Antarctica collision. The complex is hosted within migmatitic quartzofeldspathic gneisses, mafic granulites retrogressed to amphibolites, and quartzites. The structural evolution of the country rocks and the alkaline complex are similar. The first phase of deformation, D1, produces a pervasive segregation banding (S1) in all rock units within and outside the complex. A second deformation phase D2 isoclinally folded S1 along subvertical axial planes with shallow plunging axes. F2 isoclinal folds are ubiquitous in the country rocks and the eastern extremity of the complex. In the interior of the alkaline body, D2 strain decreases and S1 is commonly subhorizontal. While amphibolite to granulite facies conditions prevailed during deformation, post-D2 annealing textures testify to persisting high grade conditions. In the west, a NNE-SSW trending dextral shear zone with strike-slip sense (D3) truncates the complex. Within this shear zone, quartzofeldspathic country rocks are plastically deformed, while hornblende-K-feldspar assemblages of the complex are retrogressed to biotite and plagioclase. Warping related to D3 shears also resulted in fold interference patterns on the subhorizontal S1 foliation in low D2 strain domains. Based on its steep dip, north-easterly trend, and non-coaxial nature with dextral strike-slip sense, the D3 shear zone can be correlated with the SSZ. Since this shear zone, i.e., the SSZ, is not associated with primary igneous fabrics and resulted in solid state deformation of the complex, it cannot be considered as a conduit for alkaline magmatism, but is probably responsible for the post-tectonic disposition of the pluton.  相似文献   
194.
The northern edge of the Central Rif (Morocco) is subject to numerous landslides where mechanisms do not correspond to the classical models used by geomechanics specialists. It is necessary to adopt a multidisciplinary approach that combines geomorphology, geology, hydrogeology, and geotechnics in order to understand how such slope failures are generated, especially in a region with a heterogeneous structure characterised by significant lithological differences, severe fracturing, and thrust sheets where tectonic contacts play a major role in groundwater circulation. This report shows that these failures are essentially controlled by the tectonic contact separating the Tisirene and Chouamat thrust sheets and by subsurface hydrodynamic conditions. A model of spatial and temporal variations in the factor of safety is proposed.  相似文献   
195.
The northern Fossa Magna (NFM) basin is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into two regions, with north-trending geological structures to the NE of the basin and EW trending structures to the west of the basin. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system that displays one of the largest slip rates (4–9 mm/year) in the Japanese islands. Deep seismic reflection and refraction/wide-angle reflection profiling were undertaken in 2002 across the northern part of ISTL in order to delineate structures in the crust, and the deep geometry of the active fault systems. The seismic images are interpreted based on the pattern of reflectors, the surface geology and velocities derived from refraction analysis. The 68-km-long seismic section suggests that the Miocene NFM basin was formed by an east dipping normal fault with a shallow flat segment to 6 km depth and a deeper ramp penetrating to 15 km depth. This low-angle normal fault originated as a comparatively shallow brittle/ductile detachment in a high thermal regime present in the Miocene. The NFM basin was filled by a thick (>6 km) accumulation of sediments. Shortening since the late Neogene is accommodated along NS to NE–SE trending thrust faults that previously accommodated extension and produce fault-related folds on their hanging wall. Based on our balanced geologic cross-section, the total amount of Miocene extension is ca. 42 km and the total amount of late Neogene to Quaternary shortening is ca. 23 km.  相似文献   
196.
Tortonian calcarenites of the Betic Cordillera were deposited in coastal or very shallow marine environments and represent an ideal marker for estimating vertical movements from the late Miocene to the Present. A map showing the heights at which these Tortonian marine rocks are situated has a clear correlation with the present relief, indicating that today's relief has been formed since the Tortonian. There is also a good correlation between present relief and the Bouguer anomaly distribution in the Betic Cordillera, as well as with crustal thickness. Likewise, the present relief is directly related to the geodynamic setting of a horizontal N–S to NNW–SSE compression and an almost perpendicular extension, along with isostatic readjustment, existing in the Betic Cordillera from the Tortonian. As a result of these regional stresses, faults and folds have produced notable vertical movements. The highest rates of uplift of the Betic Cordillera coincide with large antiforms, in particular those of the Sierra Nevada and the Sierra Filabres. Several subsiding sectors also exist (for example, the Granada Basin or the Guadalquivir Basin). The foreland Guadalquivir Basin has a complex history because the uplift in its eastern sector and subsidence in the western sector coexisted during the late Tortonian. Today the whole Betic Cordillera is characterized by differential regional uplift, even in the aforementioned subsiding sectors.  相似文献   
197.
This paper presents the preliminary results from a study of Holocene-emerged shorelines, marine notches, and their tectonic implications along the Jalisco coast. The Pacific coast of Jalisco, SW Mexico, is an active tectonic margin. This coast has been the site of two of the largest earthquakes to occur in Mexico this century: the 1932 (Mw 8.2) Jalisco earthquake and the 1995 (Mw 8.0) Colima earthquake. Measurement and preliminary radiocarbon dating of emergent paleoshorelines along the Jalisco coast provide the first constraints upon the timing for tectonic uplift. Along this coastline, uplifted Holocene marine notches and wave-cut platforms occur at elevations ranging from ca. 1 to 4.5 m amsl. In situ intertidal organisms dated with radiocarbon, the first ever reported for the Jalisco area, provide preliminary results that record tectonic uplift during at least the past 1300 years BP at an average rate of about 3 mm/year. We propose a model in which coseismic subsidence produced by offshore earthquakes is rapidly recovered during the postseismic and interseismic periods. The long-term period is characterized by slow tectonic uplift of the Jalisco coast. We found no evidence of coastal interseismic and long-term subsidence along the Jalisco coast.  相似文献   
198.
The basal depth of the outer layer with internal magnetic sources was calculated from magnetic data available within a roughly 500 km wide and 1200 km long area, running from central Germany to southern Italy. The dataset, deriving from different aeromagnetic surveys, is reduced to the reference altitude of 3000 m a.s.l. and a reference year of 1980.0. The adopted method, which transforms the spatial data into the frequency domain, provides a relationship between the two-dimensional spectrum of the magnetic anomalies and the top and centroid depths of the magnetic sources. The magnetic layer bottom depth (MLBD) thus obtained is 29-33 km deep in the stable areas (central Europe Variscan units, Corsica-Sardinia Variscan block) and corresponds to the Moho, having an average temperature of 560 °C. From the Alps to the Apennines, MLBD ranges between 22 and 28 km and is clearly shallower than the Moho. In these units, the wide variation of MLBD appears to be compatible with the presence of shallow magnetised bodies, consisting of lower crustal rocks (Ivrea-Verbano zone), ophiolitic units (Penninic zone and Voltri Massif) and intrasedimentary basic volcanic bodies (Po Basin). An average value of 25 km can be attributed to MLBD, which corresponds to a temperature of 550 °C. In the peri-Tyrrhenian zone and the Ligurian Sea, MLBD is below the Moho, which ranges from 17 to 20 km depth, and it has a temperature matching approximately to the Curie temperature of magnetite (580 °C).  相似文献   
199.
Succeeding to multiply collisions of different blocks in Late Paleozoic[1―5], complex intracontinental structural deformation occurred in the Tianshan area during Mesozoic-Cenozoic[6―16], which controlled coeval basin-range evolution and resulted in intensive modi- fication and adjustment of the Paleozoic oil-gas reser- voirs[17―19]. The Kuqa Depression is a secendary struc- tural unit of the Tarim basin, in which Mesozoic- Ce- nozoic deposits occur in thickness of 6000―7000 m. The Kuq…  相似文献   
200.
Clastic sedimentary rocks record a number of in-formation about the compositions and paleoweathering conditions of the source areas, and the tectonic setting of the depositional basin[1―6]. The traditionallypetrological study commonly utilizes the major com-ponents (Quartz, Feldspar and Lithics) of the silici-clastic sedimentary rocks to investigate the source rock composition and tectonic setting[7]. However, thepetrological method is somewhat limited, because many of the mafic components f…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号