首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   13篇
  国内免费   3篇
地球物理   12篇
地质学   54篇
海洋学   17篇
综合类   1篇
  2020年   1篇
  2018年   1篇
  2017年   8篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   11篇
  2008年   9篇
  2007年   4篇
  2006年   5篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1985年   3篇
  1978年   1篇
排序方式: 共有84条查询结果,搜索用时 46 毫秒
61.
M. Rossi  O. Vidal  B. Wunder  F. Renard   《Tectonophysics》2007,441(1-4):47-65
Theoretical models of compaction processes, such as for example intergranular pressure-solution (IPS), focus on deformation occurring at the contacts between spherical grains that constitute an aggregate. In order to investigate the applicability of such models, and to quantify the deformation of particles within an aggregate, isostatic experiments were performed in cold-sealed vessels on glass sphere aggregates at 200 MPa confining pressure and 350 °C with varying amounts of fluid. Several runs were performed in order to investigate the effects of time, fluid content, pressure and temperature, by varying one of these parameters and holding the others fixed. In order to compare the aggregates with natural materials, similar experiments were also performed using quartz sand instead of glass spheres. Experiments with quartz show evidence of IPS, but the strain could not be quantified. Experiments with glass spheres show evidence of several types of deformation processes: both brittle (fracturing) and ductile (plastic flow and fluid-enhanced deformation, such as IPS). In experiments with a large amount of water (≥ 5 vol.%), dissolution and recrystallization of the glass spheres also occurred, coupled with crystallization of new material filling the initial porosity. Experiments performed with a fluid content of less than 1 vol.% indicate creep behavior that is typical of glass deformation, following an exponential law. These experiments can also be made to fit a power law for creep, with a stress exponent of n = 10.5 ± 2.2 in both dry and wet experiments. However, the pre-factor of the power law creep increases 5 times with the addition of water, showing the strong effect of water on the deformation rate. These simple and low-cost experiments provide new insights on the rheology of soda-lime glass, which is used in analogue experiments, and of glass-bearing rocks under mid-crustal PT conditions. They also highlight the strong enhancement of plasticity of natural rocks in presence of fluid or of a glassy phase.  相似文献   
62.
We report novel laboratory measurements of the full electrical resistivity tensor in reservoir analogue quartzose sandstones with clay contents less than 1.5%. We show that clean, homogeneous, visually uniform sandstone samples typically display between 15% and 25% resistivity anisotropy with minimum resistivity normal to the bedding plane. Thin‐section petrography, analysis of fabric anisotropy, and comparison to finite‐element simulations of grain pack compaction show that the observed anisotropy symmetries and magnitudes can be explained by syn‐depositional and post‐depositional compaction processes. Our findings suggest that: electrical resistivity anisotropy is likely to be present in most clastic rocks as a consequence of ballistic deposition and compaction; compaction may be deduced from measurements of electrical anisotropy; and the anisotropy observed at larger scales in well logging and controlled‐source electromagnetic data, with maximum resistivity normal to bedding, is most likely the result of meso‐scale (10?1 m–101 m) periodic layering of electrically dissimilar lithologies.  相似文献   
63.
The mudrock log-derived compaction curve is a significant tool for investigating the primary migration of hydrocarbon, predicting fluid overpressure, estimating formation erosion thicknesses and restoring the buried history and paleo-structure of a basin. However, the presence of kerogen in organic-rich shales can create typically high logging values of the acoustic transit time. Thus, the abnormally high values of the acoustic transit time for organic-rich rocks may not truly reflect the porosity variations of subsurface rocks, leading to great uncertainties in the understanding of the mudstone compaction and a certain amount of error in the abnormal fluid pressure estimation when using the mudrock log-derived compaction curve. Therefore, it is necessary to recalibrate the mudstone compaction curve by eliminating the increment of the acoustic transit time caused by the kerogen content of organic-rich mudstones. Taking the southwest Ordos Basin as an example, this paper presents a new equivalent volume model based on the composition of organic-rich shale in which the kerogen content is also considered. Based on the quantitative relationship between the rock composition and the acoustic transit time, a quantitative formula for calculating the acoustic transit time increment caused by the kerogen is derived. This formula shows that the increment depends not only on the organic content but also on the occurrence state, pore size, pore fluid composition and other factors. X-ray diffraction (XRD) data were used to determine the main mineral composition of the mudstone and to calculate the acoustic transit time of the rock skeleton. Then, the mudstone compaction curve in the Zhenjing area was calibrated by combining the measured porosity and total organic carbon (TOC) of the mudstone based on the correction formula. The compaction characteristics varied significantly between before and after the calibration. The slope of the normal compaction trend (NCT) line decreased by 30–55%, and the acoustic transit time deviation from the NCT in the undercompaction interval decreased significantly. The overpressure at the maximum burial depth estimated by the equivalent depth method is in better agreement with the results obtained by numerical simulation after the calibration, and the porosity determined from the well log after the calibration is also closer to the true measured value. The method proposed in this paper is of great significance for improving the reliability and accuracy of compaction research on organic-rich mudstones, especially for the accurate estimation of abnormal pressure in the source rock layer. Additionally, it can be used as an effective reference for mudstone compaction studies in similar geological settings areas or basins.  相似文献   
64.
路基土在长期服役过程中性能会发生衰变,其中含水率及压实度是路基施工时的重要控制指标,因此,土体的含水率控制及压实质量是关系路基性能评价的关键因素。为了弥补现有检测方法的不足,基于四极电测量法研发了一种土体物理参数室内快速测试装置,通过改变含水率对不同压实度土样的电阻率、极化率变化进行了一系列室内试验,得到了其相关关系及变化趋势,分析了含水率、压实度对电参数的影响,提出了依据土含水率、压实度计算电阻率、极化率的计算公式,探讨了测试方法的可行性。结果表明:不同地区土的电阻率均随含水率、压实度增加而减小,极化率随含水率、压实度的增加而增大,不同压实度下,土的电阻率、极化率随含水率变化分别呈现相似指数、对数特征;对于天津王庆坨地区壤土,压实度在84. 47%~94. 41%范围内,含水率从15%变化至20%时,电阻率下降为原来的1/3~1/2倍,极化率增大为原来的1. 4~2. 3倍,得到了室内拟合公式;实际工程中,电阻率法更适用于土体含水率检测,极化率法更适用于土体压实度检测;综合应用电阻率、极化率指标对于路基工程具有较好的勘探前景。研究成果将为路基土的工程性质检测及评价提供理论基础。  相似文献   
65.
A great difference exists between the hydrocarbon charging characteristics of different Tertiary lacustrine turbidites in the Jiyang Super-depression of the Bohai Bay Basin, east China. Based on wireline log data, core observation and thin-section analyses, this study presents detailed reservoir property data and their controlling effects from several case studies and discusses the geological factors that govern the hydrocarbon accumulation in turbidite reservoirs. The lacustrine fluxoturbidite bodies investigated are typically distributed in an area of 0.5–10 km2, with a thickness of 5–20 m. The sandstones of the Tertiary turbidites in the Jiyang Super-depression have been strongly altered diagenetically by mechanical compaction, cementation and mineral dissolution. The effect of compaction caused the porosity to decrease drastically with the burial depths, especially during the early diagenesis when the porosity was reduced by over 15%. The effect of cementation and mineral dissolution during the late-stage diagenesis is dominated by carbonate cementation in sandstones. High carbonate cement content is usually associated with low porosity and permeability. Carbonate dissolution (secondary porosity zone) and primary calcite dissolution is believed to be related to thermal maturation of organic matter and clay mineral reactions in the surrounding shales and mudstone. Two stages of carbonate cementation were identified: the precipitation from pore-water during sedimentation and secondary precipitation in sandstones from the organic acid-dissolved carbonate minerals from source rocks. Petrophysical properties have controlled hydrocarbon accumulation in turbidite sandstones: high porosity and permeability sandstones have high oil saturation and are excellent producing reservoirs. It is also noticed that interstitial matter content affects the oil-bearing property to some degree. There are three essential elements for high oil-bearing turbidite reservoirs: excellent pore types, low carbonate cement (<5%) and good petrophysical properties with average porosity >15% and average permeability >10 mD.  相似文献   
66.
Chalk compaction is often assumed to be controlled by a combination of mechanical and effective stress-related chemical processes, the latter commonly referred to as pressure solution. Such effective stress-driven compaction would result in elevated porosities in overpressured chalks compared with otherwise identical, but normally pressured chalks. The high porosities that are frequently observed in overpressured North Sea chalks have previously been reported to reflect such effective stress-dependent compaction.However, several wells with deeply buried chalk sequences also exhibit low porosities at high pore pressures. To investigate the possible origins of these overpressures, basin modeling was performed in a selected well (NOR 1/3-5) offshore Norway. This modeling was based on both effective stress-driven mechanical porosity reduction, which enables modeling of disequilibrium compaction, and on stress-insensitive chemical compaction where the porosity reduction is caused by thermally activated diagenesis.The modeling has demonstrated that the present day porosities and pore pressures of the chalks could be successfully replicated with mechanical porosity loss as the only process leading to chalk porosity reduction. However, the modeled porosity and fluid pressure history of the sediments deviated significantly from the porosity and pore pressure versus depth relationships observed in non-reservoir North Sea chalks today. To the contrary, modeling which was based on thermally activated porosity loss due to diagenesis (as a supplement to mechanical compaction), resulted in modeled chalk histories that are consistent with present day observations.It was therefore inferred that disequilibrium compaction could not account for all of the pore pressure development in overpressured chalks in the study area. The observation that modeling including temperature-controlled diagenetic porosity reduction gave plausible results, suggests that such porosity reduction may in fact be operating in chalks as well as in clastic rocks. If this is correct, then improved methods for pore pressure identification and fluid flow analysis in basins containing chalks should be developed.  相似文献   
67.
Late Cretaceous mudstones from two wells located in the northern North Sea and the Norwegian Sea have been examined with respect to quartz cement. Two different types of quartz cement (Type 1 and Type 2) have been identified using SEM/EDS/CL-analysis of drill-bit cuttings at depths 2370–2670 m (80–85 °C). Type 1 appears as relatively large aggregates (30–100 μm) of depth/temperature related crypto- or microcrystalline to macrocrystalline irregular quartz cement formed by local re-crystallization of biogenic silica. The CL-responses of Type 1 quartz cement give a clear indication of an authigenic origin. Type 2 quartz cement represents relatively high amounts of extremely fine-grained micro-sized (1–3 μm) crystals embedded as discrete, short chains or small clusters/nests within the illitized clay matrix. The CL-responses of micro-quartz crystals indicate an authigenic origin. The micro-quartz is most probably sourced from silica released during the smectite to illite dissolution–precipitation reaction. The petrographic evidence indicates that most of the silica released by the smectite to illite reaction has not been exported out of the mudstones. The silica released produce a subtle inter-connected micro-quartz network interlocked with aggregates of micro-quartz and authigenic clay crystals. This micro-quartz cementation process causes a significant and sharp change in the mudstone stiffness at the onset of the chemical compaction regime. This is indicated by an abrupt increase in well log velocity (Vp) and change in seismic facies close to 2500 m (80/85 °C).  相似文献   
68.
Rock physical properties, like velocity and bulk density, change as a response to compaction processes in sedimentary basins. In this study it is shown that the velocity and density in a well defined lithology, the shallow marine Etive Formation from the northern North Sea increase with depth as a function of mechanical compaction and quartz cementation. Physical properties from well logs combined with experimental compaction and petrographic analysis of core samples shows that mechanical compaction is the dominant process at shallow depth while quartz cementation dominates as temperatures are increased during burial. At shallow depths (<2000–2500 m, 70–80 °C) the log derived velocities and densities show good agreement with results from experimental compaction of loose Etive sand indicating that effective stress control compaction at these depths/temperatures. This indicates that results from experimental compaction can be used to predict reservoir properties at burial depths corresponding to mechanical compaction. A break in the velocity/depth gradient from about 2000 m correlates with the onset of incipient quartz cementation observed from petrographic data. The gradient change is caused by a rapid grain framework stiffening due to only small amounts of quartz cement at grain contacts. At temperatures higher than 70–80 °C (2000–2500 m) the velocities show a strong correlation with quartz cement amounts. Porosity reduction continues after the onset of quartz cementation showing that sandstone diagenesis is insensitive to effective stress at temperatures higher than 70–80 °C. The quartz cement is mainly sourced from dissolution at stylolites reflected by the fact that no general decrease in intergranular volume (IGV) is observed with increasing burial depth. The IGV at the end of mechanical compaction will be important for the subsequent diagenetic development. This study demonstrates that mechanical compaction and quartz cementation is fundamentally different and this needs to be taken into consideration when analyzing a potential reservoir sandstone such as the Etive Formation.  相似文献   
69.
Shales comprise more than 60% of sedimentary rocks and form natural seals above hydrocarbon reservoirs. Their sealing capacity is also used for storage of nuclear wastes. The world's most important conventional oil and gas reservoirs have their corresponding source rocks in shale. Furthermore, shale oil and shale gas are the most rapidly expanding trends in unconventional oil and gas. Shales are notorious for their strong elastic anisotropy, i.e., so‐called vertical transverse isotropy. This vertical transverse isotropy, characterised by a vertical axis of invariance, is of practical importance as it is required for correct surface seismic data interpretation, seismic to well tie, and amplitude versus offset analysis. A rather classical paradigm makes a clear link between compaction in shales and the alignment of the clay platelets (main constituent of shales). This would imply increasing anisotropy strength with increasing compaction. Our main purpose is to check this prediction on two large databases in shaly formations (more than 800 samples from depths of 0–6 km) by extracting the major trends in the relation between seismic anisotropy and compaction. The statistical analysis of the database shows that the simultaneous increase in density and velocity, a classical compaction signature, is quite weakly correlated with the anisotropy strength. As a consequence, compaction can be excluded as a major cause of seismic anisotropy, at least in shaly formations. Also, the alignment of the clay platelets can explain most of the anisotropy measurements of both databases. Finally, a method for estimating the orientation distribution function of the clay platelets from the measurement of the anisotropy parameters is suggested.  相似文献   
70.
成岩作用是影响砂岩声波速度的地质因素之一,定量表征压实和胶结作用的砂岩声波速度岩石物理模型具有重要的理论和实践应用意义.选取视压实率和视胶结率定量表征砂岩成岩作用,通过建立视压实率与颗粒配位数的关系将压实作用的影响引入修正的定量表征胶结作用的CCT模型,最终建立了一种能够定量表征压实和胶结作用对砂岩声波速度影响的岩石物理模型.理论考察发现,随胶结率的增大,岩石声波速度首先迅速增大,随后趋于稳定;随视压实率增大,岩石声波速度同样逐渐增大,当胶结率较大时声波速度变化更为明显.为了验证该声波速度模型,分别对人造砂岩和天然样品进行了声波速度实验观测,结果表明:实验结果与理论分析的趋势吻合良好.该模型易于使用,能够为应用地震和测井资料识别有利储层、定量评价孔隙度以及开展横波速度预测等应用提供理论基础.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号